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Disclaimer – versioning and documentation 
Code is truth. This document is correct at the time of writing, but the system is still in development, 

so there may be detail changes before release.  

After release, there will certainly be updates to the system and this document, as we learn more 

about large scale, real world deployment of the app and the mechanisms by which the virus spreads. 

We will likely evolve the system security once we understand those real world deployments better.  

In the interests of expediency, this paper concentrates on the most important privacy and security 

challenges involved in building a contact tracing app that is part of a wider public health 

management effort. There is much more to the security and privacy design, but those issues are not 

unique to a contact tracing app.  

We intend to open source our codebase once the first release is finalised. The documentation 

accompanying that release will supersede this paper.  

There will be multiple releases of the app as the Government’s response to the COVID-19 virus 

progresses. Not all features detailed here will necessarily be in the initial release.  

 

About this paper 
This document provides a high-level overview of the security and privacy characteristics of the app 

that is in development by NHSx, the digital innovation unit of the National Health Service, to help 

manage the COVID-19 crisis in the UK.  
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This  is not a full description of the entire system, the socio-technical design, epidemiological modelling 

or the plethora of other work being performed outside of this application development.  Nor does this 

document detail the significant, diverse, expert input to the overall system and oversight of its 

development.  

Instead, this technical paper concentrates only on the most important and unique security and privacy 

characteristics of the putative app and its infrastructure. We only describe epidemiological and clinical 

aspects of the system, in order to set context for some technical decisions and trade-offs.  

The epidemiological advice and models that the NHS is working from show that self-diagnosis is an 

important part of managing the spread of the disease, alongside various clinical tests and the wider 

public health response strategy. The Oxford group responsible for the model publishes much of its 

work.  

Self-diagnosis can reduce by days, the time it takes a potentially infectious person to isolate. This is 

critical to the management of the spread of the disease, under the assumptions in the UK’s model.  

There are obvious corollaries to a model that includes self-diagnosis. We explore some of those here, 

with their current mitigations.  

Finally, a contact tracing app cannot work in isolation – it must work in concert with, and be a pathway 

into, the wider public health response. We do not cover that integration here, but it is in place.  

 

Introduction to the NHS COVID-19 app 
The NHS COVID-19 app aims to automate key parts of public health contact tracing by offering a 

proximity cascade system that can help slow transmission of the COVID-19 virus. This will save lives, 

reduce pressure on the NHS, help return people to normal life and mitigate damage to the economy.  

The app also aims to preserve individual and group privacy, be tolerant to various malicious users and 

minimise the risks of pseudonymous subgroup reidentification. Importantly, it is driven by and informs 

expert epidemiological modelling, which in turn drives public policy. 

 

How the NHSx app works 
The user-centric description of the app is:  
 
“When I download the app, it keeps an anonymous record of when I’ve been close to other people 
(proximity events) . 
 
If I self-diagnose in the app, as displaying COVID-19 symptoms, I can choose to provide my personal 
record of proximity events to an NHSx system.  
 
The NHSx system can then work out who to notify that they have potentially been in contact with 
COVID-19. To these people, it can provide the latest advice and, potentially, access to testing.  
 
Analysis of the records of proximity events from people displaying symptoms will allow NHSx to 
monitor and control the spread of the virus. 
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Preserving the privacy of users is high priority - personal information is kept to a minimum unless I 
enter it.”  
 

We will describe the main parts of the system and enumerate some of the security and privacy risks, 

along with their mitigations.  

This document is not a full security and privacy analysis. We use common shorthand for cryptographic 

operations where the context is obvious.  

For the purposes of this paper, readers should assume that cybersecurity best practice is being 

adhered to in the architecture of the microservices and back-end infrastructure, the overall 

development process and in the operational and security management of the infrastructure. We will 

show this in due course.  

 

App operation 
The app will determine and record proximity events between users of the application, on a rolling 

basis. It will also allow users to assert a self-diagnosis to the system, by way of a structured set of 

questions.  

Such an assertion allows users to donate their proximity event data to a central system, which will 

model the proximity events to provide an overall infection risk for each physical encounter.  

Should any particular physical interactions meet a threshold, those app users potentially impacted will 

receive a notification through the app. This will tell them that they may have been close enough, for 

long enough, to someone who has since developed symptoms of COVID-19, that they are at risk of 

infection. They will then be signposted to existing NHS guidance.  

The app may request some extra information at registration, or when a user asserts that they have 

symptoms and chooses to donate their data. Currently, this is limited to the first part of a postcode 

(to help resource planning and disease tracking) and answers to some clinical questions regarding 

symptoms (to increase sensitivity and selectivity of self-diagnosis). In future, this is likely to be a 

pathway to clinical testing.  

The app will also ask people to release themselves from self-isolation if a notified contact seems not 

to have caused infections (see later), or if they get a clinical negative test.  

 

Security and privacy criteria 
We enforce the following high priority security and privacy requirements:  

1) Minimise collection of personal data (ideally, no personal data should be collected). 

2) Active user consent is required for any action involving collected data. 

3) It should not be possible to track users of the app over time, through the Bluetooth 

transmissions. 

4) It should not be possible for an external observer to associate any Bluetooth transmission 

with any device-specific information, over and above what they can infer through proximity 

(e.g. I can see that this ephemeral Bluetooth LE transmission value is linked to Alice’s device 

because I can see that Alice is the only person close to me). 
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5) It should not be possible to submit spoofed data on behalf of another user. 

6) It should not be possible for the recipient of a notification to determine which of the people 

they have been in contact with has asserted symptoms. 

7) The system must be tolerant to the actions of malicious users:  

a. Single user seeking to gain from a false self-diagnosis 

b. Malicious user seeking to cause mass notification in a given area (e.g. trying to shut 

down a hospital) 

c. Nation state actor seeking to cause panic through mass notification across the 

country 

8) A malicious user must not be able to replay a notification of proximity from the service to 

another user. 

These are not the only security and privacy promises we make, but seem to be the most important 

to explain early in the app’s development.  

 

System architecture overview 
The following actors and components exist in the system. 

1) Users of the app 

In our model, users have consented to have their proximity to other users recorded and we 

expect them to donate their data when they become symptomatic. Users may be malicious. 

 

2) Devices on which the app is installed 

 

3) The registration service 

The registration service is used to register a particular installation of the app and to 

exchange installation-specific and global parameters. The registration service will provide a 

random, unique and anonymous InstallationID (a persistent pseudonym) and the 

registration process agrees a symmetric key between the device and the registration service. 

These are stored together in a database. The registration service also provides other system 

parameters, such as the server public key. 

 

4) The data collection service 

When a user chooses to donate their proximity data to the system, they provide the data 

collection service with their event log, which contains anonymous pseudonyms that they 

have collected over Bluetooth LE. For each pseudonym, the data collection service can 

recover the underlying random and anonymous InstallationID. 

 

5) The risk modelling service 

Given the proximity information (based on normalised Bluetooth LE received signal strength 

indicators), the risk modelling service can score each encounter in terms of risk of 

transmission of the virus, since not every proximity event will be equally hazardous. The risk 

model will be updated as epidemiological and clinical data becomes available.  

  

6) The notification service 

Once proximity events have been scored as sufficiently risky, notifications will be generated 

for each relevant installation, based on the InstallationID. Notification queues will be 
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modelled to ensure they do not have particular undesirable characteristics and then sent for 

delivery by the notification transport. In our instantiation, the notification transport is 

Google’s FireBase service, which operates across our target ecosystems. 

 

7) The expert clinicians  

The clinicians are responsible for ensuring: 

• The risk scoring of contacts is based on an evolving view of the best transmission 

models available. 

• That the notification cascades make sense in the context of the virus transmission 

characteristics, enabling malicious events to be detected. 

• The efficacy of any restrictions on the population from the data provided by the 

system are understood. 

• The aggregate status of users is fed into health system resource planning (from the 

locality voluntarily provided by users).  

In the NHS app, the infrastructure on which the various back end services operate is run in commercial 

public cloud, with the NHS in control of the code, deployment, operation and administration of the 

various infrastructure and services (either directly or through contracts).  

In our model, the infrastructure provider and the healthcare service can be assumed to be the same 

entity. 

 

App lifecycle 
Here we describe the various stages of the app lifecycle at a high level. More detail of the various 

protocols involved is provided later.  

Installation and Registration 

The app registration process exists to set up a relationship between a particular app install instance 

on a user’s mobile phone and the service infrastructure. This includes, setting up asynchronous 

notifications, exchanging various cryptographic entities and system parameters.  

The simplified process is: 

- The user downloads the app and initiates registration 

- The app contacts the notification transport (Google Firebase in our instantiation) and requests 

a registration token, which is generated and returned to the app 

- The app contacts the registration service and registers its registration token 

- The registration service generates1 an anonymous random GUID (the InstallationID), 

symmetric key used for authentication and activation code. These are stored with the token.  

- Registration service sends an activate message via the notification transport to the app 

- Device contacts the registration service with the activation code, which returns the 

InstallationID and symmetric key. 

The registration process does not require the user to submit any personal data and no identifying data 

is taken from the phone.  

 
1 It would be better if both client and server contributed to the entropy in the GUID. This may be changed in 
the future.  
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The only data required at registration is the first part of the postcode to help with regional healthcare 

modelling.  

Any device-unique cryptographic material is stored in the most secure manner possible, on the host 

device. For iOS devices, cryptographic material is stored in the Secure Enclave Processor, using Apple 

standard APIs.  

The position on the more variable Android ecosystem is more complex, but the open source Bouncy 

Castle cryptographic library is used and hardware-backed secure storage is used, if available on the 

device. Otherwise, best effort software-only protection is used.  

BroadcastValue derivation  

BroadcastValues are created periodically by the device, using the standard Elliptic Curve Integration 

Encryption Scheme (ECIES), detailed below.  

Our central server has a private 𝑃𝑟𝑖𝑣𝑆𝑒𝑟𝑣𝑒𝑟 key and associated public key 𝑃𝑢𝑏𝑆𝑒𝑟𝑣𝑒𝑟 for a fixed 

system-wide set of parameters over the standard curve, P256. The public key is sent to each device 

during the initial registration exchange. 

At the start of every broadcast period, 𝑡, (currently 24 hours – see later for rationale), the device 

creates a new, ephemeral private key on the curve 𝑃𝑟𝑖𝑣𝐷𝑒𝑣𝑖𝑐𝑒,𝑡 and an associated public key 

𝑃𝑢𝑏𝐷𝑒𝑣𝑖𝑐𝑒,𝑡  

The device then creates a secret value, 𝑍 = 𝐸𝐶𝐷𝐻(𝑃𝑢𝑏𝑆𝑒𝑟𝑣𝑒𝑟 , 𝑃𝑟𝑖𝑣𝐷𝑒𝑣𝑖𝑐𝑒,𝑡) using its ephemeral 

private key and the server’s long term public key, a simple ECDH key agreement.  

We then use a the X9.63 KDF with SHA-256 with input of the ephemeral secret and the server public 

key to derive two ephemeral symmetric 128 bit values, thus :  

(𝐾, 𝐼𝑉) = 𝐾𝐷𝐹(𝑍, 𝑃𝑢𝑏𝐷𝑒𝑣𝑖𝑐𝑒,𝑡) 

The plaintext payload we wish to be able to recover in the server is merely  

𝑚 = (𝑆𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒||𝐸𝑛𝑑𝐷𝑎𝑡𝑒||𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝐼𝐷||𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒) 

 

where the date values are 32-bit UNIX epoch dates, the InstallationID is 128 bits and the 

CountryCode is the 16 bit ISO3166-1 country code. The dates are used to perform anti-replay 

protection and the country code allows for multiple countries to interact, if necessary.  

We then proceed to use AES in Galois Counter Mode to compute the pair 

(𝐶, 𝐼𝐶𝑉) = 𝐴𝐸𝑆𝐺𝐶𝑀𝐸𝑁𝐶𝐾(𝑚, 𝐼𝑉) 

where AESGCMENC is AES encryption in GCM mode, C is the resultant ciphertext of the encryption 

of the message m and ICV is the GCM-derived integrity check value. K, the cryptovariable, and IV, the 

initialisation vector, are as derived from the KDF. We use NULL authentication data.  

Our BroadcastValue is then constructed as the concatenation of the ephemeral public key the device 

most recently created (along with a tag denoting key format for future use), the ciphertext 

containing the encrypted dates, InstallationID and country code, and the integrity check value: 

𝐵𝑉 = (𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒||𝑃𝑢𝑏𝐷𝑒𝑣𝑖𝑐𝑒,𝑡 , ||𝐶||𝐼𝐶𝑉) 

giving a total BroadcastValue size of 856 bits.  
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Proximity Event Logging 

The BroadcastValue, derived from the InstallationID, currently has a periodicity of 24 hours. Every 24 

hours, a new BroadcastValue is calculated by the phone.  

The phone advertises a specific service over Bluetooth Low Energy. The service is unique to the NHSx 

app and only other NHSx apps (or those pretending to be one) will connect to the BLE service on a 

nearby device.  

Once connected, the following full payload is shared over the Bluetooth Low Energy connection  

𝑃 = (𝐵𝑉||𝑇𝑥𝑃𝑜𝑤𝑒𝑟||𝑇𝑥𝑇𝑖𝑚𝑒||𝐴𝑢𝑡ℎ) 

where 𝑇𝑥𝑃𝑜𝑤𝑒𝑟 is the BLE transmit power from the sender in dBm, 𝑇𝑥𝑇𝑖𝑚𝑒 is the Unix Epoch time 

of the transmission and 𝐴𝑢𝑡ℎ is a 16 byte truncation of an HMAC of the other contents of the 

payload, keyed using the sending device’s symmetric authentication key.  

Periodically during the connection (currently every 8 seconds, subject to change due to testing and 

modelling) the Received Signal Strength Indicator (RSSI) for the connection from the BLE stack is 

recorded.  

Once the BLE connection fails – likely due to the phones going out of range – an event is logged, 

containing the local time, the received BLE payload, the n-tuple of RSSI values and the total time of 

the encounter.  

So, each event in the log consists of the following: 

𝐷𝑎𝑡𝑒, 𝑅𝐵𝑉, 𝑇𝑥𝑃𝑜𝑤𝑒𝑟, 𝑇𝑥𝑇𝑖𝑚𝑒, 𝐴𝑢𝑡ℎ , 𝑟0, … , 𝑟𝑛, 𝐸𝑥𝑡𝑒𝑛𝑡 

Where 𝐷𝑎𝑡𝑒 is the local system date, 𝑅𝐵𝑉is the BroadcastValue received from the proximate device 

over Bluetooth Low Energy, 𝑇𝑥𝑃𝑜𝑤𝑒𝑟 is the BLE transmit power from the sender in dBm, 𝑇𝑥𝑇𝑖𝑚𝑒 is 

the Unix Epoch time of the transmission from the sender, 𝐴𝑢𝑡ℎ binds the time, power, 

BroadcastValue to a particular remote device, 𝑟𝑖 is the 𝑖𝑡ℎ sample of the BLE RSSI value and 𝐸𝑥𝑡𝑒𝑛𝑡 

is the total elapsed time of the continuous encounter.  

For clarity, this event log is stored locally on the device, protected by the default per-application 

policy on the device. Events automatically age off after a set time period, linked to the epidemiology 

of the virus. Currently, this is set to 28 days.   

The periodicity of the BroadcastValue can be changed, but 24 hours is attractive as a simple count 

on the device can give people information to help them understand whether they are following 

social distancing best practice (e.g. ‘Today, you appear to have been very close to 4 people and 

reasonably close to 20’) without the involvement of any external party.  

Self-reporting of symptoms 

When a user believes they have symptoms, they will be able to ‘donate’ their event log to the 

service.  

This is a one-time batch operation and does not set up a persistent upload of data. The log is 

integrity protected by an HMAC, encrypted with the shared symmetric key established at 

registration and sent to the service infrastructure over TLS-protected channels.  

Users will be asked some questions about symptoms, to help with epidemiological analysis.  
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Recovery of proximate device IDs 

The server can look up the device-specific symmetric key and decrypt the submitted event log, 

providing some authenticity that the log was generated by the asserted device identity.  

The log HMAC is checked to provide integrity and the server then proceeds to recover the underlying 

InstallationID for each BroadcastValue in each record in the submitted proximity event log.  

In the extension case, where multiple countries are collaborating, the plaintext CountryCode from 

the BroadcastValue is used to route to a particular service and select the appropriate private key. 

Server operation on BroadcastValues 

Trivially, the server can recover the underlying InstallationID and ISO8601Date from the 

BroadcastValues sent to it.  

For any received BroadcastValue, the server extracts the device ephemeral public key 𝑃𝑢𝑏𝐷𝑒𝑣𝑖𝑐𝑒,𝑡 

and performs the simple key agreement using ECDH and its own private key 𝑃𝑟𝑖𝑣𝑆𝑒𝑟𝑣𝑒𝑟  giving it the 

ephemeral secret value 𝑍 = 𝐸𝐶𝐷𝐻(𝑃𝑢𝑏𝐷𝑒𝑣𝑖𝑐𝑒,𝑡 , 𝑃𝑟𝑖𝑣𝑆𝑒𝑟𝑣𝑒𝑟). 

Note that the period, 𝑡, is implicit and requires no synchronisation of counters across devices or 

infrastructure.  

The server can then use its derived shared secret, Z, and the device’s ephemeral public key 

(𝐾, 𝐼𝑉) = 𝐾𝐷𝐹(𝑍, 𝑃𝑢𝑏𝐷𝑒𝑣𝑖𝑐𝑒,𝑡) 

 

and proceed to recover the original message 𝑚, from the ciphertext 𝐶, contained in the 

BroadcastValue 

𝑚 = 𝐴𝐸𝑆𝐺𝐶𝑀𝐷𝐸𝐶𝐾(𝐶||𝐼𝐶𝑉, 𝐼𝑉) 

 

where AESGCMDEC is AES decryption in GCM mode, the ICV is the integrity check value recovered 

from the BroadcastValue and K, the cryptovariable, and IV, the initialisation vector, are as derived 

from the KDF.  

This results in a set of events containing the fixed (but anonymous and random) InstallationID for 

each device that has been proximate to the submitting device, along with the validity period of the 

key (to allow replay defence) and the owning country reference (which must match the plaintext 

value).  

The server can now look up the symmetric authentication key for the each InstallationID in the 

records and validate the HMAC authentication of the (BroadcastValue, TxPower, TxTime) and ensure 

that the authenticated transmission time makes sense in the context of the submitted record.  

Risk modelling 

The server now has an event log consisting of InstallationID, an authenticated transmission power 

from the parter device, an n-tuple of RSSI values and the total time of the encounter.  

The device model, recorded on initial registration, is used to normalise RSSI values in each record to 

give a normalised set of distance measures for each record, regardless of the receiving device radio 

characteristics.  
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Each event can now be risk scored by an epidemiological model. Not all proximity events will give 

rise to significant risk of transmission of infection and this modelling step is used to cut down events 

that are low risk, from an epidemiological point of view.  

The risk model will be improved by epidemiologists as knowledge of the virus characteristics 

improves and from system data giving feedback on the effectiveness of the model, such as the 

number of users, warned of proximity risks of particular types, subsequently becoming infected. 

Notification cascade 

We are now left with a sequence of high-risk (from a viral transmission point of view) events and the 

associated InstallationIDs of the devices implicated in those events.  

Notifications are queued for release and some cases will need to be triaged by humans before being 

released. This triage is for reasons of evolving epidemiological understanding, based on the data, as 

well as analysis and the need to filter of suspicious cascades.  

The system now uses the notification provider to send an event to each app instance whose 

InstallationID is listed, to generate local notification events, subject to on-device constraints that will 

be discussed later.  

 

Notification issues 

There are a number of scenarios around notification that need to be handled. Here, we provide 

details of a non-exhaustive set of examples.  

1) The low contact number problem 

Consider a user of the app, Alice, whose only contacts are her immediate family and her 

external carer, Chris.  

 

If Chris then notifies a self-diagnosis, all the people who have been sufficiently proximate to 

him for sufficient time will then be alerted. This includes Alice.  

 

We assume that Alice can observe that her immediate family are asymptomatic and can 

therefore deduce that Chris is now symptomatic and likely infected. This is a breach of 

Chris’s privacy, under our model.  

 

Since the central system does not necessarily know the contact graph of notified entities (in 

this case Alice) at the time of notification, suppression of the notification can, subject to a 

policy decision, be done locally in the app, using simple counting rules (subject to a small 

population around Alice). 

 

2) The mass notification problem 

Consider a malicious user, who can collect broadcast identities from around a particular 

area, such as a hospital, and record them all.  

 

They can register a malicious pseudo-device and generate realistic-looking but entirely fake 

contact events for all the BroadcastValues it has observed. (The mechanism of the chosen 

notification provider makes this marginally more difficult, but we assume it is zero work here 

and suggest that ownership of a Raspberry Pi and a decent antenna is all that is required). 

 



 

11 of 13 

 

Assume the attacker knows enough about the epidemiological model to ensure that all of his 

fake proximity events are classed as high risk and will generate a notification. Then the 

malicious user can create an arbitrarily large notification cascade, potentially causing real 

world impacts.  

 

There are many ways to tackle this problem. One example could be to remotely query some 

subset of the devices that the attacker claims he was proximate to, in order to determine 

whether they have the pairwise proximity event. This could have privacy implications, 

however. For the moment, we have used the transmission risk model in the centralised 

service, simple counting and the expert centralised human oversight of potentially large, or 

unusual, notification cascades to mitigate this.  

 

3) The incorrect submission problem 

Assume a user submits a self-diagnosis and the notification cascade happens to the high-risk 

contacts who all self-isolate.  

 

We can understand the likelihood of the initial self-diagnosis being correct (in advance of 

any clinical testing results) by observing whether sufficient of the contacts also report 

symptoms within a small number of days. If not, we can quickly inform people that they no 

longer need to self-isolate.  

 

4) The targeted false alerts problem 

Assume an attacker wishes to target a particular user and cause them to self-isolate. They 

can get sufficiently close to the target to create a proximity event that will score as high risk. 

If the attacker self-decalres symptoms, in the process submitting this contact event, the 

target will be notified to self-isolate.  

 

This is, to varying degrees, a feature of all digital contact tracing protocols and each will have  

different potential mitigations. Depending on the properties, over-the-air protocol and the 

opportunities for ‘sense checking’ interactions, this sort of attack may or may not scale.  

 

In our model, the ability to centrally corellate and ‘sense check’ putative interactions and the 

recording of observed radio parameters give us the ability to spot scaled attacks. We cannot 

spot an attack where an attacker observes a target’s Bluetooth transmissions and creates 

false proximity records that look reasonable. However, as more people submit contact 

records, it may be possible to corellate pairwise events. This is future work.  

 

There are other scenarios that require special treatment and there will be other oddities that come 

to light as the system is scaled. The centralised model we have adopted allows us to manage these in 

a way that seems to be more difficult for a decentralised model, where the service is essentially a 

dumb router. This model also allows for more refined epidemiological inferences to be made as the 

transmission model is adapted to prevailing circumstances.  

Second order proximity events, and the resulting cumulative ‘risk from’ and ‘risk to’ users will be 

available in due course and requires only a change in the centralised epidemiological algorithms. 

This would allow more targeted notifications where the transmission risk warrants.   
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In due course, the service may be extended to be one pathway to confirmed and authenticated 

clinical tests, which would follow a slightly different path, but still preserve privacy and security until 

a user specifically identifies themselves to the healthcare system.  

 

Reidentification risk 
One of the main issues with a centralised system is the potential risks brought about by the 

collection of the proximity events in one place, giving rise to a graph which describes proximity 

events between users.   

In all large scale social graphs of this sort, there is a risk that seemingly innocuous data can be 

analysed to identify particular subgroups of the population. This is a well understood problem and 

papers such as this one by Ohm give a good overview. These reidentification techniques always 

require some sort of data, other than the persistent pseudonym, to be present. 

At the time of writing, our contact graph nodes are labelled only with the persistent pseudonym, 

postal district (covering several thousand properties) and the various contact events (time, pairwise 

contact persistent pseudonym and the radio data that serves as a proxy for interaction distance). 

There is insufficient data here to attract any reidentification risk.  

The risk comes as more data is added to the graph, or commingled with it. The app system is 

deployed on separate infrastructure, managed separately to the rest of the NHS systems. Any 

connection to other clinical or record systems, for example to link with testing, will be done through 

privacy preserving gateways. These will be detailed as designs are finalised for functionality. The 

addition of more data to the graph nodes needs careful consideration.  

 

High level privacy and security criteria 
In due course, we expect a more standardised way to compare the various tracing models that will 

emerge. When it does, we will use that, but in the meantime we offer a high level view of the main 

characteristics of the NHS app, at the time of writing.   

Criterion 1 is satisfied, since, from the description, it is trivial to observe that we collect no personal 

data. 

Criterion 2 is satisfied in two ways. Firstly, collection of proximity event data by Alice’s device from 

Bob’s device requires both Alice and Bob to have installed and activated the app, including by 

confirming a consent statement. Secondly, event data are stored locally, unless and until, they are 

submitted to the centralised service by a positive action on the part of the user (i.e. asserting they 

are symptomatic). Locally stored events age off as they become less useful under the infection 

model in use.  

Criterion 3 is satisfied by the construction of the BroadcastValue. Given 𝐵𝑉𝑖 for a particular device, it 

is impossible for an external observer to calculate 𝐵𝑉𝑖−𝑛 or 𝐵𝑉𝑖+𝑛 for any 𝑛 ≠ 0. Similarly, given the 

entropy in the ephemeral private key 𝑦 that is used to construct the BroadcastValue, there should 

be no relationship between any set of BroadcastValues created by individual devices.  

Criterion 4 is satisfied by virtue of there being no device-specific information in the system at all and 

the entropy in the ephemeral keypairs generated periodically by the device.  

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1450006
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Criterion 5 is satisfied by tying a symmetric key to the InstallationID of the device. By observation, an 

external observer does not have the InstallationID of another user – and hence cannot create 

BroadcastValues that lead to that InstallationID being recovered by the server – and also does not 

posses the device-specific symmetric key with which to encrypt and HMAC the submitted log. 

Spoofing data from another user requires compromise of that user’s device to recover the 

InstallationID and symmetric key. 

Criteria 6 and 7 are satisfied by the various controls in place in the calculation of real-world risk from 

the submitted RSSI data and the extra controls in place in the notification cascade system for ‘weird’ 

cascades. However, in reality, criterion 7(a) cannot be individually controlled without breaking 

overall system privacy promises. However, the impact of this attack is localised and minimal. 

Criterion 8 is satisfied through the individual encryption keys per device, which provide authenticity 

of the notification communication from the server over the notification provider.  

Centralised vs Decentralised 
This paper does not make a case for either a centralised or decentralised matching model, but seeks 

only to explain the current design for the NHS systems. However, it seems prudent to document our 

current understanding of the implications of the use of a decentralised digital contact tracing model 

in the UK. 

We believe that any likely decentralised model (because there are many) will have the following 

impacts in the UK:  

• Move the health response from ‘react to symptoms’ to ‘react to clinical test results’: We 

cannot currently find a way to manage malicious notifications, or possible amplification 

attacks, in a decentralised model without authentication. Consequently, notification must be 

uniquely tied to an authentic clinical test. This generates a dependency on the digital 

authentication of clinical testing.  

• Delays to symptom reporting: Most decentralised systems seem to introduce delays in the 

reporting of symptoms, sometimes due to characteristics of the crypt design, sometimes due 

to the data flow requirements. 

• Second order tracing (also known as recursive tracing) seems to have different 

characteristics: A decentralised model allows only ‘risk to’ an individual from their exposures 

to be understood, while a centralised model allows ‘risk from’ an infectious individual to 

others.   

These will affect the health response in the context of the epidemiological model used in the UK and 

it is for health professionals to decide on the likely impact of those changes. 


