# The Layered Enterprise Data Safety Model (LEDSM)

# A Framework for Assuring Safety-critical Communications

#### **Nicholas Hales**

Retired C.Eng MIET

#### **Abstract**

Lt. Kermit Tyler was warned of the approach of a large flight of aircraft toward Pearl Harbour. The radar operators were tracking Japanese planes coming to attack the base, but the operator failed to make clear the size of the formation and Tyler did not pass on an alarm of "attack imminent". In the case of the "9/11" attack on New York's Twin Towers, the intelligence agencies did not share relevant information. These problems, and many more like them, are caused by a lack of planning of the safety-related communication network in advance. There is a need to plan horizontal protocols to communicate with other organisations and vertical protocols to communicate effectively within organisations. The Layered Enterprise Data Safety Model (LEDSM) is a way to develop safer networks of communication of any type, verbal, telephone, internet, etc., or a mix of types, so that the risks of failures to communicate are considerably reduced. The initial idea is taken from the Open Systems Interface. This paper takes the reader from initial concepts through ten sections of increasing learning. These sections show how, even with increasing complexity, the principles involved provide increased confidence that risks are minimised. Worked examples are provided to increase insights into the numerous possible applications.

#### 1 Introduction

The ad-hoc development of communication networks involving people and systems has proven to be a contributory cause of many accidents. The Chernobyl meltdown, (Higginbotham 2019), the terrorist bombing of the Ariana Grande concert in Manchester (Collins 2021), and the mid-air collision over Überlingen, (2002 Überlingen mid-air collision 2022), all dealt with in more detail later in this paper, are examples of tragedies that need not have happened, and the risks would have been considerably reduced if communication protocols, such as LEDSM requires, had been in place.

On each occasion improvements are made to prevent such a thing happening again, but up until now, no formal method of thinking about mixed human and system safety-critical networks involving communication, that begins at initiation of an Enterprise and ends when the Enterprise ends, has been proposed. STAMP (System-Theoretic Accident Model and Processes) and STPA (System-Theoretic Process Analysis) methods are improving analysis, according to many studies, but have not linked to post-production communication. The most surprising 'Black Swan' is perhaps the one that people see and admit exists, but then forget about later to such an extent that, when it occurs again it appears to be a 'Black Swan' again. It is the one that exposes the poor communication planning of an organisation, be it

engineering, political, emergency service, or medical related. It shows little was learned from the first experience. It is easy to believe that all the communication channels you will need in the event of an incident or emergency have been put in place. But when the emergency for which the communication tools were acquired comes along it is sadly all too often shown to be the case that the planned communication fails for one reason or another and, like the discovery of black swans in Australia, everyone is surprised.<sup>1</sup>

It is common for people to think that they know what they are doing when they establish their contacts and methods of communication for projects, events, and products that are to go into service. The facts show that time and again, disastrous consequences are the result of this over-confidence in what appears to be simple planning. Usually, the necessary communication has many nuances that are easily missed, so a formal approach is likely to improve things. It is easy to think and be seduced by statements such as, "Well, we will all have mobile 'phones to keep in touch with each other".

The Layered Enterprise Data Safety Model (LEDSM) method for developing communication networks for safety-critical networks is designed to add a level of formalism to the design process without becoming too technical, recognising that most people are not safety-criticality professionals. Despite the excellent technical progress of computers and telephony over the past thirty years, the use of communications has failed those dependent on its successful application. It is scandalous that so much can be provided by engineers to fulfil society's eagerness for communication systems, while in critical applications, behaviours required to be understood, in order to operate those communication systems effectively, are not taught well enough, usage is not planned, and development is not maintained. To fill those needs, LEDSM represents a useful safety communications management method to add to the toolbox of safety engineering.

Notable other work in this field for emergency communications includes the following:

- "Communication challenges in emergency response" (Manoj and Baker 2007).
- "A systematic approach to improve communication for emergency response" (Dilmaghani and Rao 2009).
- "Challenges of emergency communication network for disaster response" (Huang and Lien 2012).
- "Wireless technologies for emergency response: A comprehensive review and some guidelines" (Pervez et al. 2018).
- "Data-Centric Safety: Challenges, Approaches, and Incident Investigation" (Faulkner and Nicholson 2020).

Any improvement to current approaches needs to facilitate identification of potential deficiencies in communications, and so allow their contribution to risk to be reduced. This is where Why/What Because Therefore Reasoning, (WBTR) is useful, (introduced in the next Section). Then the need is to manage the communications system over time; monitoring, assessing and triggering change when appropriate, which LEDSM facilitates, iterating back to WBTR when deficiencies are apparent.

involved in the network allowing them to communicate safely regardless of the media used to carry the message."

2

<sup>&</sup>lt;sup>1</sup> In this paper, the central concept is the use, in communication involving humans, of an already existing model for electronic communication, the Open Systems Interconnection, (OSI), model redefined as LEDSM. The term 'protocol' appears alongside the descriptions of the LEDSM throughout this paper and the term is used to describe analogous arrangements to those best described by using the Cambridge University Dictionary definition "a computer language allowing computers that are connected to each other to communicate". Protocols in this paper means, "language formally written down and agreed between persons

# 2 Why We Must Improve Communication Networks

In the modern world we rely on networks. Business networks, networking with other people, and networks related to telephony and electronic communications. All are there to help us work better but, in situations in which critical problems can arise, risks of not receiving important data need to be treated differently. LEDSM will help in identifying important data, important people involved in providing you with information, and the machines that are critical to transmitting that data to and from you, and to and from others.

A simple example of where LEDSM is useful is when there is a pressing need for newly-communicating Enterprises to pass important data. What happens, for instance, when the communications are almost guaranteed to be incompatible — for instance, when new allies cooperate in a battlefield situation. In the event of incompatible communication systems, allies would almost certainly resort to verbal communication, and this is precisely where LEDSM can be helpful. The development of new systems to make the previously incompatible systems of the allies compatible could take years to develop, whereas LEDSM would only take weeks to implement, and could be done to a sufficient standard for some confidence within days.

The large number of incidents indicates that safety-related communication is not treated with sufficient care by many institutions. By formalising the communication expected, using LEDSM, as proposed here, greater focus and care may be taken. If planning of communication is done more formally, within organisations and in communicating with other organisations, and processes adhered to in practice, many deaths and severe injuries can be avoided.

There are two distinct ways to deal with safety-related information delivered by networks of systems and people. One can prepare for incidents, in the belief that on the day when an incident occurs, it will be a relatively simple affair to receive information from those on the ground and hand out orders to them in return, because "one knows one's job." The other way is to realise how important delivering the right data at the right time is and acting on that understanding. The abstract of the 2019 Data Safety Guidance, produced by the Safety-Critical Systems Club (SCSC 2019), states "Data, as distinct from software and hardware, has been a contributing factor in many accidents and incidents. The impact of data-related issues continues to grow as we rely more and more on data-driven systems." Primarily, this paper is about looking at how humans may better process information within data-driven systems. It does not, however, exclude machines and electronic systems involved in communication. It may therefore be of some use to those developing such systems in which humans are not involved, especially if human-like decisions have to be made and communicated. That should make for safer environments for all.

The following sections describe how the LEDSM has adopted and mirrored the Open Systems Interconnection (OSI) model of the electronics world (ISO/IEC 1994). It should improve both the way we utilise communication systems, and the way we interface with communicating systems when designing essential safety-critical communication networks at many levels of granularity, providing greater confidence to both management at more abstract levels and those more deeply involved in delivering safe processes.

LEDSM communication can be seen as sets of protocols within Enterprises and between Enterprises. In addition, it can be used in conjunction with a method of identifying potential problems in communication, through a form of disciplined brainstorming. Built on Why-Because-Analysis (WBA), used to analyse accidents (Causalis 2018), that method is WBTR,

mentioned at the end of the Introduction above. It takes an *a priori* approach, as opposed to WBA's post-accident analysis, that might be considered to be akin to the well-established HAZOPS (Hazard and Operability Study) used in the chemical industry. In this analogy, data is like a fluid flowing between processors or processes. Section 10 gives a small worked example of WBTR.

It is important to let everyone state what information they expect, and what information they can guarantee they will deliver, when considering safety-related issues. If what you want in terms of information or data, from any individual, either in your Enterprise or in another Enterprise, is not in the data that any other individual or Enterprise is declaring they can guarantee, then more analysis needs to be done. Solutions thus derived from that analysis need to be implemented in the form of Dependency-Guarantee Relationships, (DGRs). A DGR involves person or system 'A' guaranteeing to another person or system 'B' that the data they are dependent upon will be provided in a timely and accurate manner, i.e. within a certain time frame and reliably enough to act on. DGRs are described more fully in the context of LEDSM in Sub-section 3.8.

Machine to human, and vice versa, communication is notorious for errors. If the tasks are simple then machines can make all the critical decisions, even using Bayesian probabilities to make decisions when an intelligent knowledge base system is included within the decision-making loop. However, if the situation is so critical that it requires a human intervention, known as Human-in-the-loop (HITL) systems, then the decision over what is said or done is inevitably subjective, to a greater or lesser extent, and therefore likely to introduce errors, especially in stressful situations. Furthermore, if the machine accepting human intervention then has to pass information, via communication links, to another machine, that will subsequently provide that message to another HITL system, then the possibilities for errors multiply. Hence it is vital that agreed protocols between organisations in any particular loop, i.e. about what safety-related data will be passed within what time frame, are established. Only by knowing what cannot be correct, or is questionable, will a data receiver be able to take appropriate actions, including asking for a repeat sending, or clarification, if necessary. Systems risks can soon increase when a HITL is essential, so one should always permit an independent view of any proposed emergency procedures and processes.

The importance of safe communication can be illustrated briefly here. As already mentioned, there is a technique used to analyse accidents called WBA. WBA has been used to analyse the incident when 193 people died due to the Roll-On-Roll-Off, (RoRo) ferry, Herald of Free Enterprise, sinking after leaving harbour with its bow doors open (Whybecause analysis: Example 2006). The findings tie closely with the court of inquiry conclusions except in one respect, that the official inquiry identified "a general culture of poor communication in Townsend Thoresen" (MS Herald of Free Enterprise 2022). It is this conclusion that shows how important the planning of good communication must be, and LEDSM assists in formalising this process. Once a network has been designed, and before development, it should be examined using the WBTR technique, improvements made if necessary, then the communication paths documented using LEDSM and the necessary agreements, or protocols, formalised. One of the most useful aspects of LEDSM is that it is flexible and new communication paths are easily added in. If anything is missed, a later review before implementation may show other paths are necessary, but bear in mind that this is expensive in system development, though relatively cheap in the case of exclusively human communication, by re-training and creating more channels. A review of the original WBTR should be performed when additions to or subtractions from networks are made,

looking at each new possible failure and checking that the response is appropriate and, if not, continuing with developments.

Identification of risks can be a highly technical process and may require specialist knowledge and/or experience. In such cases, the analysis should not be undertaken by non-professionals. However, just from our casual lives many of us are familiar with safe engineering principles and these are embodied and evident in the use of LEDSM, making it useful for non-professionals as well. Implementing networks of people and systems employing LEDSM will reduce risks even if developed by those unfamiliar with safety engineering, but employment of professionals to assist and review would be wise in any event to ensure all aspects are considered.

To summarise, this paper is intended to instruct on how to reduce the risks involved in network communication by exploration of examples of the use of LEDSM and associated techniques. It achieves understanding through taking the reader through a gradual development of learning. On finishing reading the paper, it should be easier to integrate the use of WBTR, LEDSM and DGRs to create less-risky data and information transmission systems, even when they include humans who often are involved in transmitting information.

# 3 Management of The Layered Enterprise Data Safety Model

#### 3.1 Overview

This section describes how LEDSM both within an Enterprise and with other Enterprises, should be managed. There are two viewpoints that must be understood:

- The first is the overall management of an Enterprise's LEDSM, and what Senior Managers must know to be effective in managing their Enterprise's emergency communications and consequent actions.
- The second is management at lower levels of the Enterprise where the vast majority of interaction with other layers within an Enterprise and with other Enterprises takes place.

Reading this section will help management to understand the principles they need their staff to operate by, but also assist technical staff and safety behaviour practitioners in understanding why management will require adherence to strict codes. This continues previous work published in the Safety Critical Systems Club's Newsletter (Hales 2020) and the Proceedings of the Safety-critical Systems Symposium (Hales 2021).

#### 3.2 The Reason the Term 'Enterprise' is Used Instead of 'Organisation'

The primary reason the term Enterprise was coined in the development of this safer data communication management technique is that it neatly parallels business. In business, 'enterprises' can be anything from huge corporations down to partnerships of two people or even just sole traders, such as market-stall holders, whereas 'organisation' is not a term that could be used to describe sole traders.

For the convenience of design and realisation of the essentials of safe communication in any system or system of systems, some individuals will be masters of their own domain and will know with whom they need to communicate in other domains. They may be Enterprises by

themselves, as will a person appointed to lead a project before any design work starts. Examples of that are a field researcher hunting down the facts of a viral outbreak, which is briefly examined later in this paper, or the manager of the Chernobyl Nuclear Power Plant project when it was first proposed, Director Victor Brukhanov.

### 3.3 The Layers

Any Enterprise may have up to seven layers. This is a somewhat arbitrary figure, but the layers used in the OSI for communicating electronic systems, are seven, so it is considered that should be sufficient at a maximum, logically, as a model on which to base safe human and human-system communication. An Enterprise though could just have one layer, in a similar fashion to how an Enterprise can be a sole trader. On the other hand, the seven-layer limit helps to restrict bureaucracy, an unwanted characteristic in safety-related communication, in very large organisations.

#### 3.4 Protocols

Inherent within LEDSM is the use of Protocols. These govern communication between the (up to) seven layers of an organisation with safety-related communication requirements. They also govern communication between identical layers in other organisations. For example, there will be a protocol between the management of each Enterprise and the management of every other Enterprise with which direct communication takes place. The protocol at Management level will indicate to another Enterprise, at an abstracted level, what information it will be expected to supply and what is expects to receive. That will also cover what the lower layers will expect to receive and deliver, though of course the lower layer protocols will have more detail.

As an example (see Figure 1), a Nuclear Power Enterprise management protocol may state that information as to whether an emergency evacuation of a building was underway may be sent at Level 2 from the nuclear facility, Enterprise 1 in the diagram, to the emergency services Enterprises, (police, fire, military and ambulance), Enterprise 2 in the diagram, (only one representative emergency service shown for clarity). The colours used are standardised for diagrams in this paper, yellow for management, blue for supervisory and beige for action; note, where condensed and when one person is the Enterprise, the highest layer colour is used).

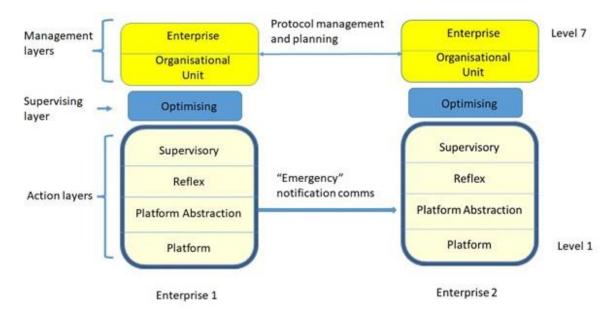



Figure 1 ~ Illustrating the 7 Layers and Communication Expected

An explanation of the terminology used in defining the layers is given in Sub-section 3.10, (the top three layers) and Section 5 (all 7 layers with OSI equivalents). For the moment they are for clarity and later reference only.

Those emergency services Enterprises will agree in the protocol to provide emergency services with a given timescale and agree to notify the nuclear facility of any delays. The Management level of each protocol will also have protocols, cascading down their own Enterprise to Layer 2, of what information should be supplied to keep management informed of progress. Ultimately, management oversees and approves the form of the protocols to all levels. However once those are in place, management should only be actively involved in communicating with management in other Enterprises and Layer 6 in their own Enterprise, the level immediately below Management, both (usually in slow time) to adjust protocols as processes and technology evolve.

The rest of the emergency response will be governed by protocols already in place and should involve automatic or well-rehearsed responses. This reflects how much of what is done in computers to ensure accurate communication is done without the user at the top level having to know what is happening. Figure 2 illustrates the protocols as applying to just one (any) layer and its adjacent layers.

# There may be up to 7 layers in a LEDSM diagram of an Enterprise but this illustrates just 3 Protocol A Layer A will have protocols governing communication with the layer above it and the layer below it.

Figure 2 ~ An Illustration of the Position of Protocols within an Enterprise

In Figure 2, the box labelled A represents a layer of LEDSM within an Enterprise and it will have two vertical protocols, one for sending and receiving data from a lower level, (more toward the instantaneous emergency response level), and one for sending and receiving data to a higher level (more toward the management level). The protocol would describe in what circumstances instant decisions can be made and communicated outward from the Enterprise, via the lower level if necessary. Note that no horizontal connections to other Enterprises are shown here, so it may be thought of as being a snapshot of an Enterprise under development.

The interface between vertical and horizontal layers in an Enterprise must be governed by the agreed DGRs. The DGR is dealt with later in Sub-section 3.8.

#### 3.5 Dealing with Large Volumes Supplied by Some Communicating Enterprises

A very large and reasonably effective communicating organisation with many thousands of participants receiving notifications and e-mails, can be viewed as one Enterprise when being linked into a network model. An example of such is the Programme for Monitoring Emerging Diseases (ProMED) e-mail that often provides *ad hoc* information for those involved in viral outbreak prevention. This is preferable to trying to make an absurdly tangled wiring diagram of who is likely to want data from whom. This is illustrated in Figure 3.

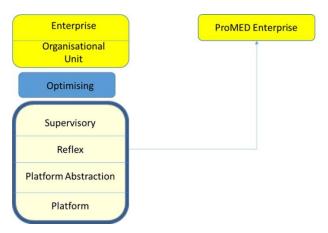



Figure 3 ~ Linking to an Enterprise with Multiple Connections

### 3.6 Keeping the Network Visualisation to the Minimal

Off-line and for their own peace of mind, researchers, politicians, engineers, scientists, medics and commercial businesses can generate maps of their networks at levels of granularity that are different from those handed down by Protocols within their Enterprise. LEDSM thereby enables them to see how, with some thought applied, they can propose a case, for instance, to the higher levels vertically above them in their Enterprise for further communication links to be formally established with other organisations through horizontal Protocols. Management therefore is encouraged to be open to suggested improvements to Protocols. A diagram of the connections any individual has can be readily seen using LEDSM Enterprise diagrams and held by the individual without needing to know nonessential links across the network that others in their enterprise have. Non-essential in this context means 'no need to know' though, of course, as we are developing and mapping out a safety-critical communication network, all connections should be essential. It is simply that while access to the greater network may be necessary for one's understanding, a downloaded diagram of one's own connections will be kept as simple as possible so that comprehension of the completeness of one's needs are not stifled by the complexity of the network.

An example of this is when a single person operates a safety-critical data and information communication centre, such as a field worker for a satellite office, as in Figure 4 in which a World Health Organisation, (WHO), worker operates out of Jakarta to track and identify virus outbreaks. This scenario was covered in greater detail during the Twenty-ninth Safety-Critical Systems Symposium (Hales 2021). Note, of course, that the WHO worker acts as the equivalent horizontal protocol owner for all roles in other Enterprises where the layers have been allocated to different individuals. This is because the worker may have to have different protocols to communicate with an Enterprise, depending on the data to transmit. In this example the Field Worker, as a sole individual in the Enterprise, may ordinarily simply communicate with say Level 3 in another Enterprise, but when conclusions about a virus outbreak are reached, the worker may have protocols to deliver a message to the Level 7 management. An analogy would be for a sole trader in a market, talking to a high-level member of sales team to order clothes to sell, but when not receiving needed stock at an agreed time may wish to communicate with the management of the supplier.



Figure 4 ~ An Illustration of a Single Person's Connections

Connections can be expanded or reduced by the use of LEDSM alone or LEDSM and WBTR, which was briefly described earlier and is set out in more detail in Section 9. Managers at the top level of Enterprises using LEDSM should require WBTR be carried out at initiation of the network and at intervals when changes are made to help reduce the risks involved in communication channels to prevent accidents.

### 3.7 Levels Senior Management need to Understand

Management need only look at the top level of other Enterprises and at the layer below their own. In effect, senior management can condense any image of a LEDSM structured communication system to the bottom and top layers as illustrated in Figure 5 for a full seven-layer model.

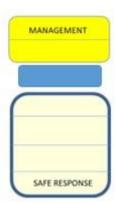



Figure 5 ~ A Simplified Management View of Enterprise Safe Communications

In electronic communication systems governed by the OSI, this is equivalent to what is to be transmitted, known at the user level (in this case management), and what is actually transmitted down wires to another communicating system, at the internet or intranet level (in this case other systems and people). All the protocols between the two are there to facilitate the effective practising of safety-related actions as required by management. Protocols within the Enterprise dictate the communication and action necessary to achieve the management goal at the lowest 'Safe Response' level, which should be guaranteed to

other Enterprises. Horizontal communication protocols will exist between one or more layers when communication to other Enterprises is involved.

# 3.8 Dependency-Guarantee Relationships

In safety-critical systems, the DGR is a formal and strict relationship in which one part of, for instance, a software system driven using two hardware processors, "guarantees" to another part that the software it runs will deliver a value within a given time constraint. That other part wants that guarantee because it in turn "depends" on that value being delivered, within a given timescale and to a degree of accuracy and correctness, in order to fulfil its own obligations to the system.

A DGR means that, as the safety-related function of one layer is dependent on information or data from another layer, the layer delivering data must offer a guarantee that such data or information will be made available, and it will be timely and safe. Each layer requiring data must state precisely what its needs are so that its 'Dependency' is understood by delivering layers. Protocols can then be developed. LEDSM uses the OSI model as the model for protocols that govern the relationship between Management objectives and the delivered information passed to other Enterprises, because in electronics each layer can only deal with data in the format it has been designed to accept. This applies to safety-related data communication systems equally. Management must be able to have absolute confidence that best possible responses are made, and the protocols of LEDSM provide the means to achieve that. Hence the term 'protocols that exemplify the principle of DGRs' is a useful way to review communication preparations for an emergency within an Enterprise and with other Enterprises.

Each layer is governed by these DGRs in a vertical sense in their own Enterprise and the Dependency and Guarantee statements should be iterated until an agreement is reached, known as the protocol, between it and adjacent layers. Difficulties that managements of Enterprises have in formulating policies with other Enterprises may create a need to modify the DGRs between layers, thus modifying the Protocol. In most situations that are safety-critical, it is preferred that Enterprise leaders are flexible enough to see the sense in minimising any difference between the needs of layers of another Enterprise and what their Enterprise actually provides, after negotiations are completed. What they do provide should be the maximum possible of the stated requirement of the other Enterprise.

The degree to which one relies on the declaration of guarantees of delivery of information need to be exposed to scrutiny, as does one's own needs, preferably by an expert third party, to ensure one has not missed issues due to the effect that familiarity tends to blind us to our own faults when things get complex. This blindness can be a result of experience making one assume that technological improvements can only enhance, and not destroy, one's carefully developed processes.

## 3.9 Creating the Initial Protocols by Adapting from Other Sources

Here we will examine already published standards and protocols on behaviour to see how, rather than reinvent the wheel, we can adapt statements to the relatively new field of Data and Information Safety Management. When implementing a LEDSM for their organisation, those involved may refer to this section to provide example wording to support activating appropriate protocols in their Enterprise.

As a brief example, many of the stated principles of professional engineering organisations fit well with LEDSM principles. For instance, the Engineering Council, on the issue of the environment states, "Seek multiple views to solve sustainability challenges" (Engineering Council 2021). Equally, seeking many opinions is the cornerstone of the recommendation to constantly review the LEDSM network one establishes and the brainstorming that involves WBTR. The visual nature of LEDSM should simplify doing that. So, the principle to adopt is to "Seek multiple views to solve data and information supply and delivery challenges". Another Engineering Council principle, slightly revised to apply to LEDSM, would be "Manage communication of data and information to minimise any adverse impact on people and the environment".

LEDSM is designed to reduce risks from all manner of hazards and a source of statements which may be rehashed to provide equally applicable principles is the Hazard Analysis guide of UK Defence Standard DEF.STAN.00-56 (UKMoD 2007) as it was at Issue 4. For instance, Clause 6.5 in that standard may be revised to become, "The Enterprise management, together with those in the Enterprise charged with responding to accidents and emergencies, i.e. those at the lower levels of the LEDSM diagram — levels 1 to 4, shall implement measures to provide the opportunity for effective stakeholder representation during safety management activities". So data communication management becomes an obligation of management to ensure their staff have established paths to communicate with many other Enterprises that need to know what data is available about the accident or emergency preparations or occurrences. At least all stakeholders need to know they were consulted.

DEF.STAN.00-56/4 Clause 7.1 also can be revised simply to: "Enterprise management must retain evidence that data communication tasks within their control and that influence safety are carried out by individuals and organisations that are demonstrably competent to perform those tasks".

Another typical protocol applicable to link Enterprise management with engineers, medics, researchers, or emergency workers may be taken from DEF.STAN.00-56/4 Clause 8.1.1, to become, "The Data and Information Transmission Management Plan shall detail the specific actions and inter-Enterprise protocols required to operate Data and Information Safety communications both within an Enterprise and externally. It shall ensure Data and Information Safety is achieved and maintained."

Lastly, as another example, Clause 9.1 of DEF.STAN.00-56/4 can be revised to read as follows: "The protocols for safe transmission and receipt of Data and Information shall consist of a structured argument, supported by a body of evidence that provides a valid case, comprehensible by all stakeholders that an Enterprise is producing and accepting Data and Information that is safe at the time of review, recognising that changes may occur between reviews in both the task the Enterprise is seeking to achieve (for example, once a virus is conquered, another may be on the way of a totally different genetic make-up within weeks), and the environment in which the Data and Information communication tasks are to be achieved". For example, some previously active Enterprises may have disappeared, or governments may have changed, etc. This is, of course, an indication that reviews of the inter-Enterprise network should be undertaken quite regularly and, depending on the need for the networking, may be as little as every month or as much as every six months. For disease control, one month may be appropriate, for emergency services responses to disasters or terrorist incidents, six months may be appropriate.

In essence, once LEDSM is understood, policy can be created to ensure it is conducted appropriately and safe communication DGRs maintained.

#### 3.10 How a LEDSM Enterprise Starts as a Management Level

It is proposed that, when the Chernobyl Nuclear Power Plant was first initiated, it would have been possible to avoid some of the catastrophic decisions that led to the disaster by using LEDSM. As with many disasters, it is the initial direction and influence of management at which an error is made, with many subsequent errors compounding the problem. Just like in safety-critical software development, if the potential for disaster is not recognised, safety issues become very expensive to address later in the development and may even be ignored until disaster strikes. This is discussed here in more detail.

Figure 6 shows some of the main characters that were influential in the chaos the led to the Number 4 Reactor meltdown at Chernobyl, but here they are embedded in an LEDSM diagram that, had it been constructed at the time, would have reduced the inherent danger of communication failures that led to the accident. It becomes obvious what went wrong, and what should have happened. Much of the rest of this sub-section is derived from "Formalising Communication on Potentially Catastrophic Safety Projects" (Hales 2020), which may be consulted for further information if required.

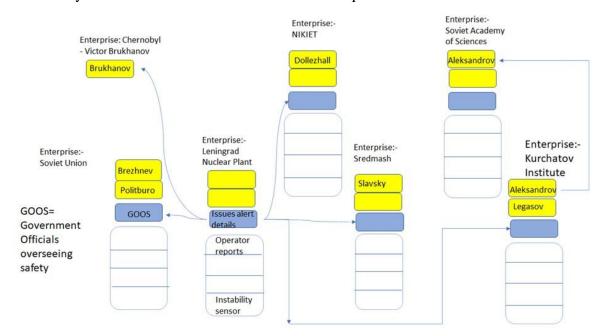



Figure 6 ~ Chernobyl Construction-related Enterprises in 1970 and Illustrative Links

The definitions of the higher management levels of the model and their relation to the nuclear command structure in 1980s Russia are examined next. Only the top three levels of the model are discussed. Detail of the OSI descriptions of all seven layers, and how they relate to their interpretations in LEDSM usage for any given project or system, are given in Section 5.

#### **Layer 7** – The 'Enterprise' layer

The Enterprise layer is the corporate entity, which in the case of the Soviet Union under the Communist Party, can be taken as the entire country, as it saw itself as having a common purpose. The layer is defined as being responsible for the planning and execution of large-scale changes to the infrastructure, responding to changes in legislation, setting and maintaining standards, procedures, and competency requirements.

In terms of monolithic Enterprises, and the Soviet Union represents such a creation, changes to the infrastructure and responding to changes in legislation can be seen as influences from outside the Enterprise, i.e. competition forcing the Soviet Union to produce cheaper electricity than Western countries in order to maintain living standards at a similar level to those other countries. Setting and maintaining standards, procedures, and competency requirements, more than educational and experience requirements at this level, implied membership of the Communist Party in those days. This, of course, meant that some talent would never achieve greatness for those who were considered less than committed to the party. The cracks in the design process, showing up later, occur because data has a source and a sink and, if the source is less than competent, the sink, whether human or machine, will not operate to best intent, though one may 'get away with it' for a while.

# Layer 6 – The 'Organisational Unit' layer

This layer is described in the OSI as being responsible for delivery of the planned service. In the Soviet world this naturally describes the Government. The layer is described as not playing any part in the day-to-day running of the system, whatever it may be. In the OSI it encodes, encrypts, and compresses data for transmission, so in the LEDSM context it may be translated as acting between higher management and safety personnel of lower levels to ensure the lower levels understand the higher-level expectation and also that management understand where the problems may lie in their proposals, as fed up through the Enterprise layers to them, by the lower level personnel. Of course, in authoritarian societies exactly the opposite often happens; interference starts, persons lower in the hierarchy are not listened to and unfortunately disasters can easily follow. Authoritarian tends to imply an understanding of the Enterprise layer above, but very little hands-on understanding of the problems with which those delivering these ambitions, in the lower layers of the system, have to deal, since everyone is behoven to those above in such a way that argument is suppressed.

This layer is likely to become involved in the short-term operation of the system in response to a serious incident that causes substantial impact on the delivery of the system. In the case of the explosion in Reactor 4 at Chernobyl, this definition precisely describes the substantial impact on the Soviet Enterprise intent, namely to create machines upon which a perfect society could rely to run smoothly and be able to outcompete the West. Hence, what was required was much closer safety data definition and competent communication. The point is that Suitably Qualified and Experienced Personnel (SQEP) are needed, not necessarily party members if the SQEP is more experienced, or more highly regarded technically, than the party member. That did not happen, which is a lesson to managers that, if understood, will reduce risks to any safety-related system or communication network in which they are involved. This applies in Western Enterprises too in that likes and dislikes of personnel should not influence the choice of who is to oversee safety.

## Layer 5 - The 'Optimising' layer

The Optimising layer is described as the most sophisticated control layer. It respects the performance and safety constraints of the underlying system and the information contingency plans. Crucially, this layer may be described by the words: "information demands on the Optimising layer are high, requiring a full understanding of the underlying system, the planned service and contingency plans." This layer, in Chernobyl terms, represents "The Nuclear Experts".

#### 3.11 The Chernobyl Communication Problems

Below are some of the involved characters and **Enterprises** as defined in the original article (Hales 2020):

- Anatoly Aleksandrov Chairman of the Soviet Academy of Sciences, responsible for nuclear technology development. — Classed as an Enterprise and also Director of the Kurchatov Institute — Classed as an Enterprise
- Nikolai Dollezhall director of The Scientific Research and Design Institute of Energy Technology (Russian acronym NIKIET) — Classed as an Enterprise
- Victor Brukhanov Director of Chernobyl plant Classed as an Enterprise
- Efim Slavsky Ministry of Medium Machine Building (the Russian acronym is 'Sredmash') **Classed as an Enterprise**
- Leningrad Nuclear Plant (1st RBMK design) Classed as an Enterprise
- Leonid Brezhnev The Soviet Union Classed as an Enterprise

So here we have one engineered Enterprise (the Leningrad Prototype Reactor), four engineering Enterprises, an engineering project barely underway (the Chernobyl Nuclear Power Plant itself), and a political Enterprise that all the others serve. There would be more later, such as the Enterprises providing components and cement for the construction of the Chernobyl reactors, but for this snapshot they are not considered. All those named could have functioned more efficiently had data and information safety been a design criterion within the Enterprises involved. This identification of involved parties illustrates how useful the term Enterprise can be, as an all-embracing term for anything from an individual to a large organisation, including governments.

Early in the development of the Chernobyl Nuclear Power Plant, when only the director had been appointed, the LEDSM diagram may have looked something like Figure 6. As can be seen, Victor Brukhanov has been appointed director but without sub-ordinate levels at this stage. All seven layers are not absolutely necessary, as roles may be combined when not in danger of overloading one person with responsibility. When an Enterprise is first mooted, there will be only one layer, the Enterprise itself, and that layer will communicate with all other interested parties until the Enterprise starts to grow and more data intensive communications begin to be necessary. All responsibility at that stage was in Victor's hands. Figure 6, then, is how a retrospective view of the Chernobyl Nuclear Power Plant construction LEDSM network, dated to early 1970, would appear.

Problems with the first RBMK, the Leningrad Reactor, needed to be reported by the operator to whomsoever had taken the role of optimising at Layer 5. To recap, that person had to understand how it should operate, the planned service and contingency plans, how the operations are to be achieved, and what the safety plans were. Management should expect a brief on whatever problem is uncovered and the fact of it should be communicated to other Enterprises that needed to know, including the Chernobyl project, as shown by the connecting line.

In summary, management should firstly have confidence that the lower levels, 1 to 4, are aware of the vertical and horizontal protocols that they are expected to follow and know their jobs well. Secondly, they should have confidence that the network is optimised and that all possible and known stakeholder Enterprises will be alerted in the event of an incident, and are aware of what is expected of them. Pre-planning using LEDSM is a key to presenting an easy-to-follow diagram.

The importance of management connectivity can be seen. The lower four levels of LEDSM are where much of the automatic responses to emerging crises, accidents, terrorist incidents, and many other life-threatening incidents occur. It should be abundantly clear that ensuring communication of intent, including the establishment of protocols vertically within Enterprises and horizontally to other Enterprises, is an important part of management activities, ensuring safe data and information are both timely and useful when incidents occur, expected or otherwise.

The primary responsibility of management in regard to LEDSM, is to ensure that those lower down the model within their Enterprise, are aware that they must establish initial communication links and develop subsequent protocols, concerning safety-critical data and information transmission, with those people or other data provision systems, such as databases and email newsletters with which they have been instructed to communicate. Though they may also suggest to their management additional persons or systems that should also be in their network.

#### 4 Reasons to Use LEDSM

## 4.1 Rules Can Be Very Important

In the book by James Martin, founder of The Oxford Martin School at the University of Oxford, warning of the terrible things that may happen if the human race does not carefully plan the future, "The Meaning of the 21<sup>st</sup> Century" (Martin 2006), he writes that if humanity is to survive, "We need to put in place rules, protocols, methodologies [sic], codes of behaviour ... that will enable us to cooperate on the planet and thrive". LEDSM could be described as being any of those as there are:

- rules governing the levels;
- protocols between the layers above and below and across to equal layers in other Enterprises;
- recommended methods on how to develop an LEDSM-based network for maximum effectiveness; and
- codes of behaviour that must be adopted by those at the ends of communication paths to operate critical communication infrastructure effectively.

The LEDSM approach will help in putting in place those needs James Martin identified in critical communication situations.

#### 4.2 Example Failures

Confidence in networks that have been developed for use in emergency situations is increased by the use of protocols between participants in the network. The establishment of protocols is a very important aspect of a LEDSM network. For illustration, here are two well-understood failures to communicate effectively:

1. Using the rudimentary RADAR available at the time, Lt. Kermit Tyler of the US Army Air Corps was charged with managing the monitoring of the skies around Hawaii for approaching enemy. He was not trained fully in his role and he made the assumption that the approaching Japanese Air Force, that an operator warned

him about, was just a scheduled delivery of US aircraft to add to the B-17 bomber fleet. The 'attack imminent' signal was not therefore issued (Kermit Tyler 2021). This would not have happened if definitive protocols had been in place and Tyler had been trained in their use. The question arising is why would his superiors not believe protocols should be in place, protocols that dictated what was to be done in the event of each type of radar return? Asking him what he was thinking of when he did not alert Pearl Harbour then becomes academic. The point is that the same question could be asked of the Chernobyl Power plant operator, what on earth were they thinking when they conducted the fatal test? With Protocols in place such questions will not arise as long as everyone abides by them.

2. During the Falklands war, despite intelligence briefings that identified an Exocet attack by Super Étendards as possible, HMS Sheffield had assessed the Exocet threat as overrated for the previous two days before the attack which destroyed it. Despite HMS Glasgow, on detecting the radar signal of the aircraft, immediately going to action stations and communicating the warning codeword 'Handbrake' by UHF and HF to all task force ships, HMS Sheffield still appeared not to assess the risk wisely. On the command ship, HMS Invincible, the warning was reduced to Amber instead of raising it to Red because they had no confirmation. Seven seconds after detecting the radar blip from the aircraft, the first Exocet missile was fired, in response to which HMS Glasgow fired its chaff. HMS Sheffield did not detect the attack until lookouts reported the smoke trail of the missile. The bridge officers did not call the captain to the bridge, made no call to Action Stations, made no evasive measures, and made no effort to prepare the 4.5-inch gun, the Sea Dart missiles, or order chaff to be fired. The anti-air warfare officer was called to the operations room by the principal warfare officer, arriving just before the first missile hit (HMS Sheffield (D80) 2022). Again, what were the officers on the bridge thinking?

It should be obvious that, in either case, protocols of what data was to be communicated, what systems were to have more than one channel to communicate, and what procedures were to be followed in communicating to others, were not developed or used. Incidents like these are easily identified as in need of improved communications, but 40 years after the Pearl Harbour attack, errors that cost lives were still being made in the Falklands, and they still are around the World.

To illustrate how just informal diagrams assist in comprehension of where communication is deficient, a diagram of the Pearl Harbour communication system is given here (Figure 7). Looking at the diagram, having read this paper thus far, one should be thinking, "What were the protocols between those connections?"

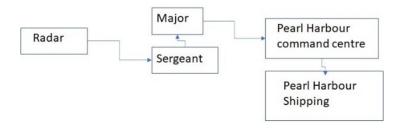



Figure 7 ~ The Pearl Harbour Chain of Communication without Protocols

It is apparent that with just simple protocols of what is expected of each represented participant in the chain, (except the radar which would have served its purpose most reliably by there being a reserve second radar), the attack could have been detected. These protocols would have governed what information is to be passed, to whom and within what timescales. LEDSM adds to such simple diagrams by providing more formal diagrams that are flexible and negotiable for stakeholders to contribute to. The diagram also assists in inspiring questioning during WBTR exercises.

#### 4.3 Resistance to Change to More-formal Methods

Sometimes in developing networks for safety-critical issues one may encounter people and organisations unwilling to engage in the necessary protocols within and outside their Enterprises. The Peoples' Republic of China covered up the Severe Acute Respiratory Syndrome outbreak when it emerged in 2002, and it appeared to be covering up COVID-19 in the early stages of January 2021: "By Friday 10<sup>th</sup> January it was clear that the Chinese authorities knew more than they were letting on" (Farrar and Ahuja 2021).

The transmission of safety-related data well in advance of incidents can be mired in bureaucracy. On Saturday, April 26<sup>th</sup> 1986 at about 1am, the Chernobyl meltdown had occurred and the roof had blown off the reactor. It was not until the Tuesday following that the Soviets released any information pertaining to the disaster, as they tried to save face, yet just after 7am on April 28<sup>th</sup>, the Monday, a Swedish nuclear engineer tested his shoes at the plant he was working on, and saw they were giving readings of gamma radiation way above normal (Higginbotham 2019). This was not only a failure to deliver data at the time of the emergency; it had been known since 1983 by nuclear design experts in Moscow that the rods of the emergency shutdown briefly caused an upsurge in reactor power, but this data was suppressed and there were no protocols governing the release of safety-related information and associated lists of who should be informed. The development of LEDSM protocol would have reduced the risk of an accident.

## 4.4 LEDSM is Not Costly to Implement

Emergency responses can be poorly planned, but why is there reluctance to invest? It could be because safety is often labelled as "Costly to Implement", so there is some reluctance to delve into problems that ought to receive attention. Consequences can be deadly, as illustrated by the holding-off of emergency workers from entering the building in Manchester, England, where an Ariana Grande concert had just taken place and a terrorist suicide bomb had been detonated. The delay in responding is considered to have contributed to extra deaths. The simple reason for it was poor planning of communication. The way LEDSM helps in these situations is that, because protocols are in place horizontally between Enterprises and vertically within Enterprises, each Enterprise knows in advance whether or not the data it receives or broadcasts is complete or as complete as the protocol permits. Correct assumptions can thereby better be made if data is as yet incomplete and demands for the fuller or complete data, in accordance with the totality of the agreed protocol, progressed as communications and knowledge improve.

LEDSM is a graphic tool for the development of communication networks in disaster situations, which is designed to be understood and used, even by those unfamiliar with safety-critical systems engineering and the associated data safety issues. It reduces the likelihood of failure to communicate in a timely and effective manner in stressful situations, through better planning. The big benefit of using LEDSM, though, is that it is very low cost

to implement. The return, in terms of any avoided catastrophes and major incidents, should be enormous when all the costs of a severe incident are taken into account — these include: the damaged equipment, environment or buildings; the injured or killed people (relatives of whom are likely to sue); the stressed employees (who may have to take months off work); and the costs of what can be a lengthy inquiry before a judge.

## 5 The Seven-Layer Model Description & Internal Enterprise Protocols

In this section, we look at the use of LEDSM within an Enterprise. In later sections the external protocols to other Enterprises are discussed.

# 5.1 The OSI Seven Layers Described in LEDSM Terms

Figure 8 shows the seven layers of the LEDSM. The summary description below that is of each of the seven layers of the OSI (ISO/IEC 1994), see also Shaw (2022), for example. At the side of the description, in bold, are examples of the usage of that layer in a LEDSM-based Enterprise's safety-critical operations and communications. The name given in the LEDSM diagram to each layer is also given in bold next to the OSI name. There will, undoubtedly, be other uses of the lower layers not mentioned here, which will come to light as many Enterprises examine their requirements and operations.

The functions can be condensed to be performed by just one person or at maximum, up to seven layers of control as described in Sub-section 3.3. These levels were originally discussed as being relevant to Data Safety in an earlier edition of the Data Safety Guidance, (SCSC 2016). The principle here is that the OSI has been shown to be effective in simplifying connection between machines, therefore it should serve as a good model for communication between people, even if a machine is in between the communicating people, e.g. a telephone system, or radios. The functions of the OSI layers should, by such reasoning, serve as a model for layers of an Enterprise that wishes to communicate effectively within itself and with other Enterprises.

Note that each layer is provided in a single layer depth table rather than a seven-layer table, as those involved in an Enterprise with responsibilities for a layer of the LEDSM do not need to know much about other layers, so it makes it easier for them to identify and understand their role by using this format.

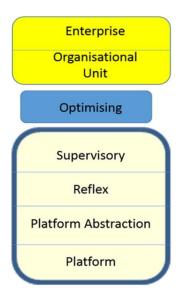



Figure 8 ~ The Seven-Layer Data Safety Model

# Layer 7 – Application/ENTERPRISE

The Application Layer at the top of the OSI model is what most software developers see; it is the layer closest to the end user. It receives information directly from users and presents incoming data to users. The application layer facilitates communication from the users' programs through the lower layers in order to establish connections with application programs at the other end. Web browsers are examples of programs that rely on Layer 7.

This is the level of the Enterprise and the Enterprise owner. Depending on the application, this may be either an individual or committee. At this level, policy ownership is the main responsibility, and an individual should take responsibility even if the layer applies to a committee. Policy must be fed down in a comprehensible manner to all those who are the part of the Enterprise dealing with safety-critical communications. Policy must also be discussed and conveyed when finalised to the other Enterprise owners, the top-level personnel responsible for safety, so that each knows the data their staff can expect to receive, and what they are expected to deliver, though some Enterprises may sometimes be difficult to persuade to release data.

Layer 6 – Presentation/ORGANISATIONAL UNIT

The Presentation Layer prepares and/or translates application data formats to network formats and vice versa. For example, it may provide encryption and decryption of data for secure communication. It is called the Presentation Layer because it "presents" data to the application or the network.

In the LEDSM context, this is the layer where the policies of Layer 7, on how communication should be set up for particular applications, are turned into practices. Management intent becomes practical action. Basically, a translation to more technically safe processes. This, for best results, needs to be understood and agreed to by other Layers 6 in other Enterprises, through horizontal protocols. A good agreement will be a sound basis for preventing dire consequences in the future, should an emergency or disastrous system fault occur, whatever that system may be.

#### Layer 5 – Session/**OPTIMISING**

When two networked devices need to "speak" with one another, a session has to be created; hence the "Session Layer". Functions at this layer include the setup, coordination (e.g. setting response timeouts), and termination of the communications channel between the applications at each end.

This is the layer where action to instigate already planned procedures and processes occurs when an actual emergency arises. It will be the primary planning level too for those procedures and processes. In the ordinary course of events there would be a lot of feedback to Layer 6 and Layer 7 to ensure all issues were covered, but there would also be a lot of feed forward and expected feedback from Layer 4 to Layer 2 on how to practice these procedures. This must be done in advance of the emergency or critical situation so that the layers below react, in real time, appropriately. In the case of the Manchester arena bombing, that would be initiation of co-ordination of communication with all the emergency organisations and personnel involved.

Layer 4 – Transport/SUPERVISORY

The Transport Layer deals with the coordination of the message transfer between application processes running on different hosts. It specifies how much data to send, at what rate, where it goes, etc. It splits the messages into smaller packets if necessary, and ensures that the messages can be reconstructed correctly at the other end. Common examples of protocols used at the Transport Layer are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

This is the part of operations that, when instigation of actions for an emergency has been received from Layer 5, will check that all communication links are in place. For instance, 'phone calls will be made to ensure someone is on the other end. If they are not, then alternatives must be found, so it would be a woeful response if all the necessary channels of communication and protocols to cover link failures, had not been put in place earlier by Layer 5 when the emergency network was in the development stage. This can be tried out in exercises, for example tests, such as: "What will the Layer 4 representative do if the primary mobile phone link between x and y is not functioning for whatever reason?"

## Layer 3 – Network/**REFLEX**

The network layer is responsible for forwarding packets from (and to) the Transport Layer; this includes sending through intermediate routers and network bridges that determine the best paths for the data transmission.

This may be thought of as actual selection of communication devices as opposed to Layer 4 which is a more abstract view of devices. Layer 4 may state that a communication system with redundancy is required. Layer 3 will decide whether that is mobile telephones, land lines, radios, walkie-talkies, or computers. The protocols for in-service periods must also be considered. The question may be, "How many routes are needed to assure connection is maintained?". This is not trivial as proven by the 2002 Überlingen mid-air collision (2022), when three telephone communications were planned but because protocols were not thought through, especially where maintenance was concerned, all proved useless in the end to prevent the tragic crash. The protocols are the most important aspect of this layer, which would include prioritisation if multiple communication devices are intended to be available.

Layer 2 – Data Link/PLATFORM ABSTRACTION

Most network switches operate at the Data Link Layer. It provides node-to-node data transfer between two directly connected network nodes; it also handles error correction for the physical layer. Two sublayers are included, the Media Access Control (MAC) sub-layer and the Logical Link Control (LLC) sublayer.

This is where the data being received is checked before it is acted on. As with electronics, the capacity of this should be adjusted depending on the level of risk and consequences involved just as error detection codes can be made more effective, but at the price of a measure of volume of data transmitted. In more-abstract safetycritical networks, such as urgent virus outbreak research, this layer may be seen more as the basic fundamentals of core interaction. In the example we look at later on, of a hospital in which a nurse had contracted a deadly virus, the hierarchy of layers would need to stretch down to the lower-skilled staff, who may, nonetheless, have important information. Lower-skilled staff would be classed as at this layer because it is at this level the data which appears important may not be and equally data which appears unimportant may be. The virus researcher would ask the lower-skill hospital staff who were good friends of the nurse who had died to clarify information they have. In the event it was those staff who were able to identify the most likely source of the virus. Note carefully therefore that just as an OSI based electronic system will not work without all seven layers, equally, LEDSM networks may be deficient without due consideration of all sources of data and information and in what form the information is delivered, even if on occasion all seven layers are vested in one person. Someone at this layer may be tasked with assuring management over and over again that all checks anyone could think of had been made. In the case of the Ariana Grande concert bombing this is the layer that checked there appeared to be no other terrorists and issued the statement that it was clear for emergency personnel, but sadly that message did not get through.

Layer 1 – Physical/PLATFORM

At the bottom of the OSI stack is the Physical Layer, which is the electrical and physical representation of the system. This can include everything from cable type and configuration to optical wavelength and radio link frequency, as well as the layout and assignment of connector pins, voltages, and other physical requirements. When a networking problem occurs, the obvious thing is to check that all the cables are still properly connected, and the networking devices are powered.

This layer will include regular checking that, for instance, standby mobile phone batteries are fully charged. It could also be particular people in the LEDSM context, as in the example given above for Layer 2, of a WHO researcher in Jakarta. That friend of the nurse who died proved invaluable in identifying the source of the virus. This may be where the intuition of communicating emergency and safety personnel proves so useful and why it is recommended that experience is captured for posterity, wherever possible, such as by databases being made available to all for whom they would be useful.

# 6 Developing Enterprise Links

#### 6.1 Preamble

An Enterprise may combine or condense layers, especially at start up, and may add layers as it becomes a more sophisticated Enterprise. The initial state was illustrated in the diagram of the potential LEDSM type links that could have prevented the Chernobyl catastrophe, (see Figure 6). Victor Brukhanov's Enterprise, the construction of the Chernobyl Nuclear Power Plant itself, at the point in time that the snapshot of links is taken in the diagram, shows he is alone. Obviously, links are not fixed for ever in safety-related communication networks, just as electronic links between businesses using the OSI will not last forever, for instance when a business ceases trading and all its links to other businesses die, or when companies successfully bid for government projects when temporary links are established until the project is finished and accepted into service.

In this section we will look at how different links can develop for networks using LEDSM including Horizontal protocols.

#### **6.2** Multiple Address Enterprises

In Figure 3, presented earlier, it was shown how an Enterprise wishing to link to an enewsletter about viruses could fit that into a LEDSM diagram. The minimising of the connections in the diagram is useful, as potentially thousands of other Enterprises are connected to a network.

Figure 3 is a diagram of a fully mature Enterprise with seven layers, and connects to the ProMED journal via the Reflex layer. This is arbitrary for illustration only, and by convention within an Enterprise there could be essential safety-related News Services that connect to any of the layers, even the management layer at the top.

Of course, there will be many e-mails or news items on ProMED that do not relate to work that a particular Enterprise is involved in. All that means is that the messages of that nature will not be 'dealt with'. This is similar to the way messages on an electronic 'ring' network are received; if not containing the address for that network connection point, they will be ignored and allowed to pass on to whichever address they are intended to go. If appropriate, they will be allowed to pass up to higher levels of an Enterprise in legitimate receipt of the message, and any checking process for veracity and relevance done by people in a LEDSM network relates to this type of action. Also, normally one might try to filter the messages broadcast using keywords, or a similar technique, so that one does not have to read most of each message to check if it is worthwhile reading the whole thing.

#### **6.3** Horizontal Protocols

It is not desirable to involve management in all the safety-related networking and data and information communication that goes on. In fact, it would be a recipe for disaster. This has a distinct engineering parallel, within the LEDSM, as it is normal in science, medicine and engineering, for instance, not to involve management with the engineering detail. So also in LEDSM, the management at the top level of an Enterprise is not involved in the day to day running of a company. Management will be looking at the strategic issues, issuing demands of staff, which equate to the vertical protocols in LEDSM. They will also be looking at who they need to network with at the management level, perhaps with regard to mutually acceptable protocols, which equate to horizontal protocols with other Enterprises. Once agreed, it may require adjustment of the vertical protocols within their own Enterprise to ensure that agreed data and information flows exist between staff at the lower levels of the model who will need on many occasions to act instantly, and inform the equivalent layer in another Enterprise of their actions. Those involved in safety-related Enterprises at the higher levels should not be involved in the instantaneous reaction to safety-related incidents as they develop, but should have put in place the protocols that enable those reacting to know they are achieving the desired effects.

To illustrate how important this is, imagine if every computer and electronic system in a network used its own rules to replace the issues that the OSI seven-layer model deals with. Every device would be an almost amorphous mass as far as other computers were concerned, and it would have very little idea of how to communicate with other computers as they too would appear to be amorphous masses.

As the advent of the Universal Serial Bus, "USB", has proved, standards are important to simplify communication and connection. It used to be common to have to interface in different ways to each peripheral that was associated with a computer, the exact wiring being dependent on the manufacturer's whim. For instance, when connecting an Olivetti printer to an early personal computer it would require completely different wiring to the connections required for an OKI dot matrix printer.

Both the OSI and LEDSM work by standardising interfaces. What is important, where other Enterprises are concerned, is that the horizontal layers understand each other, because they have established protocols between them. This is not quite as the OSI electronic seven-layer model works, because in the OSI the protocols are fixed for almost all layers, (though there are sometimes small variations that overlap into other layers). In LEDSM, the Horizontal protocols are equally as important as in the OSI, but they are more flexible. This means a layer in an Enterprise may communicate to the same layer in another Enterprise with one protocol but to another Enterprise with perhaps a slightly less open protocol, withholding some information that is given out to others. This is like using different protocols to

communicate with international newspapers, and other media, from those used with industry or government. The ideal is identical protocols, but this is not always practical; an advantage of LEDSM is that protocols may be public, so that the newspapers may be aware that they are not receiving all the information available but should understand what type of data it is that is being withheld. An example of this may be "Don't tell the press the virus is a Coronavirus, which it is, but do tell other disease control centres and research institutes that it is, because the press will run with some of them saying how dangerous those viruses are, whilst others are saying that we now have the immunological capacity to deal with these viruses so there is nothing to worry about".

Figure 9 illustrates both Vertical protocols that an Enterprise starts with and Horizontal protocols that develop with the Enterprises growing networks.

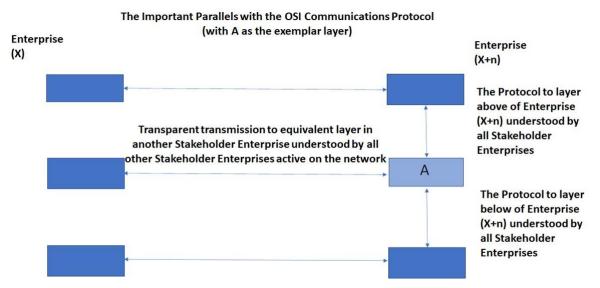



Figure 9 ~ An Illustration of Horizontal Protocols

## **6.4** Dependency Guarantee Relationships

The interface between Vertical layers in an Enterprise and between Horizontal layers to other Enterprises, must be governed by DGRs; Sub-section 3.8 described these in detail.

Although the term Guarantee is less commonly used, it is simply the complement of a Dependency; a dependency relationship is frequently not a reciprocated relationship, something is simply dependent on another thing in engineering, software development, etc. However, DGRs imply a deeper mutual relationship, which is what communication is all about, in as much that the dependent does not simply wait until it is supplied with whatever it is dependent on, but has negotiated a guarantee from the supplying layer that, whatever it may be, it will be supplied in a safe and timely manner. In other words, data or information is guaranteed both in accuracy and timeliness (ScienceDirect 2022).

In dealing with other Enterprises it should be remembered that the dependency and guarantee relationships within both Enterprises may need to be iterated until the relationship with the other Enterprise defines the data to be supplied and received that will maximise risk reduction for both parties. That will then formulate the finalised protocols both vertically and horizontally. This is not a trivial point as the communication protocols can easily be tailored to individual Enterprises, something that is not a general feature of the OSI

### 6.5 Data Passed Within An Enterprise

Unlike in the electronic application of OSI, it is not the purpose for all information to go up and down the entire seven layers (minus the checking data) as in when one sends a picture to a friend over the internet. For instance, some direct horizontal communication with other Enterprises may occur between higher levels of the model, e.g. management to management. However, in order to maintain the safety integrity of the Enterprise and those with which it communicates, an appropriate level of detail of what the communication comprises would be sent vertically down or up the layers, as appropriate and in accordance with the agreed protocols. A simple example from the world of electronic communication is that, in sending a message, one does not wish the cyclic redundancy check that adds check data to be a task of the sending user to code, and one does not want the receiving user to have to decode each message to be sure it has not been altered in transmission. That stripping of check data electronically is the equivalent in LEDSM of allowing management to control what data is released at what level, if and only if the protocols management wishes to be in place have been carefully thought through and agreed as appropriate.

# 7 Use of the LEDSM in Emergency Service Response Planning

#### 7.1 Preamble

Poor Emergency Services communication, after the Suicide Bomb Explosion at the Ariana Grande Concert in Manchester, is considered to have led to avoidable deaths. The following is an example of how LEDSM would have been useful, had the networks involved been developed in advance using LEDSM's logical processes. Just a small number of well thought through connections would have changed the face of the outcome, resulting in fewer deaths and greater confidence in the competence of the emergency services. In the event, 22 people died and 112 needed hospital treatment for their injuries. Many waited a long time in pain for help. The failures of the emergency services in responding to this suicide bombing are quite shocking and deeply disturbed the relatives of those who died or were injured.

The next section will look at more-complex problems, but this section is intended to build on understanding, so that a full grasp of the issues can be established before venturing out onto more problematic issues. Working through examples increases one's ability to meet any challenges in the future, much as Engineering students may work to solve scores of electrical technology questions, integral equations, Heaviside Step function problems, Laplace Transforms, etc. By doing so, they ensure they understand the subject sufficiently to take a professional approach when they start their careers, and can solve final exam questions too, of course...

#### 7.2 Critical Issues

The effectiveness of emergency responses could be increased by planning using a LEDSM tool, *a priori*, to analyse possible situations and responses and what needs to be changed to reduce the risks identified. Here we look first retrospectively at what did go wrong. As with many safety-related incidents, the best way to analyse what went wrong with communications in this case is to look at the timeline of known emergency actions. Table

1 is derived from an article, "The Lost Two Hours" by David Collins, in The Sunday Times edition of 25<sup>th</sup> July 2021 (Collins 2021).

**Table 1 ~ The Ariana Grande Bombing Emergency Response Timeline** 

| TIME                 | EVENT                                                                                                                                                                                                                                             |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.31                | Salman Abedi detonates suicide bomb in the "City Room" foyer. Public dial 999                                                                                                                                                                     |
| 10.41                | Armed police officers arrive = Armed Response Unit (ARU)                                                                                                                                                                                          |
| 10.44                | ARU realises there are no other terrorists. One issues the request, "We need paamedics like f**king yesterday"                                                                                                                                    |
| 10.45                | Andy Berry, Duty Liaison Officer (DLO) for the Fire and Rescue Services, without evidence, takes action to "protect" firemen by ordering them <i>not</i> to approach the building.                                                                |
| 10.47                | Inspector Dale Sexton of the police declares "Operation Plato", effectively forbidding rescue services and paramedics from entering the building, again with no evidence that it was an attack of many terrorists, as in the Mumbai hotel attack. |
| 10.50                | A paramedic assigned to assess situations before others enter, arrives in the City Room, but does not treat anyone.                                                                                                                               |
| 11.12                | Inspector Sexton declares to his control room that he is "reasonably satisfied there are no other terrorists", but he fails to call off Operation Plato.                                                                                          |
| 11.17                | Seriously injured John Atkinson is carried from the City Room to a casualty clearing location. There appears to have been little effective triage action, which should have identified John Atkinson as highest priority.                         |
| 11.48                | John Atkinson finally cleared to be taken to hospital but dies from loss of blood.                                                                                                                                                                |
| 12.37<br>next<br>day | The fire engines that could have provided stretchers (makeshift ones had been used by emergency workers and volunteer members of the public to evacuate casualties), finally arrive at the concert arena.                                         |

The critical issues then are:

- 1. Inspector Dale Sexton took actions that implied there was evidence of other terrorists when declaring Operation Plato. There was no such evidence.
- 2. DLO Andy Berry directed fire engines to a place three miles from the scene of the bombing to protect them from the risk of there being other bombs or terrorists. There was no evidence that this was necessary.
- 3. Inspector Sexton's phone was constantly engaged, so when DLO Berry tried to contact him for better information he got no reply.
- 4. The ARU's knowledge that there was clearly no evidence of other terrorists, did not get through to either DLO Berry or Inspector Sexton.

## 7.3 How Could Using LEDSM Have Helped?

Firstly, there would have been an analysis during development of a LEDSM that showed the communication path between DLO Berry and Inspector Sexton was a critical link. To do

this one could use WBTR<sup>2</sup>. In Section 10, we will look at WBTR using a worked example. What a thorough WBTR analysis would do is expose where, for instance, duplicate systems are needed. It would therefore have become not only a requirement for a dedicated hotline between key people making the decisions, but also for at least one redundant link between those persons to ensure communication can take place. This, on the LEDSM Enterprise diagram illustrated in Figure 10, could be inserted at Layer 2, which in electronic terms is the Data Link checking level.

Analysis at this stage thereby, would have meant that the protocol vertically down the Fire Services Enterprise from DLO Berry and, similarly, vertically down the respective Enterprise from Inspector Sexton to the lower 'automatic' levels, would demand that at least two and, probably more-appropriately, three communication channels were always available between their two Enterprises. That way if there is a fault, a workaround is in place. The two officers might both be thought to be at Layer 5, the Supervising level.

As hopefully is clear, the problems that may occur need to be understood by the Layer 5 persons. Protocols need to be in place to ensure Layer 2 gets the message across to whoever needs it. In addition, the protocols allow those at lower levels to check the message they receive from the operations level of another Enterprise, (i.e. like the checks performed in electronic systems on incoming messages) by asking the question, "Can you confirm that other terrorists are known to be present?". In fact, the Police Enterprise commander might then have understood his mistake and declared that other terrorists were not present, and hence the firefighters with stretchers and others could have entered earlier.

To summarise, at the concert, a major problem identified by the inquiry was the lack of communication from the hall, where the murders occurred, to other emergency service personnel. This was due to two problems hindering the communication:

- The first was a lack of protocols between the front-line worker in the hall and the leaders of the organisations. The protocols need to be in place so that those who call the tune are aware of the facts before they call that tune.
- The other was a lack of communication systems between the front-line worker and other levels within that Enterprise, any of which could have communicated to the other emergency services.

So, the analysis using LEDSM, for the front-line worker entering such a building, shows that there must be an ability to communicate to equivalents in other emergency services as well as those senior within the organisation. It may be that such designated workers could be linked and have their own protocol for who goes in first, what is communicated to the other two or three personnel and when they enter the building too. In Figure 10, the term 'Flash Message' is borrowed from the military for messages that must be dealt with instantly, not within minutes or hours.

-

<sup>&</sup>lt;sup>2</sup> What/Why Because Therefore Reasoning

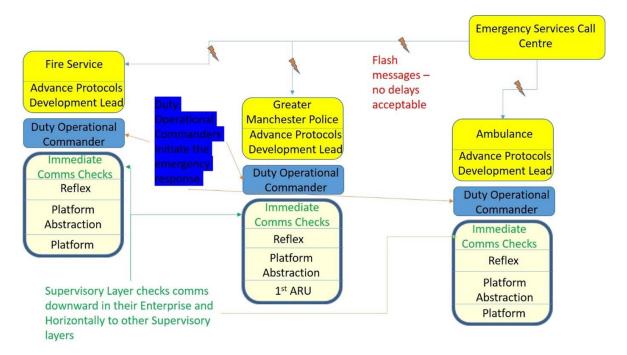



Figure 10 ~ Using LEDSM Could Help Identify Potential Communication Failings

This is a similar problem to what went wrong in the sky over Überlingen when two aircraft collided, partly because a telephone that should have been used was being upgraded, and so a warning from one Air Traffic Control centre to another could not be made. On that occasion the available communications would have been adequate, but nobody had thought through what could go wrong during maintenance. Three telephones should have been enough. Some extra communication channels, simple but effective, should have been in place for the Manchester incident.

As many people can die in a terrorist incident as an airplane crash. As an example, one may compare the, at least, 174 deaths during the Taj Hotel attack in Mumbai with the 157 passengers and crew who died when the Ethiopian Airlines Boeing 737 MAX crashed. There is no excuse for unpreparedness in operating with single communication paths, wherever threats to life can exist, when multiple communication paths are so plainly required to reduce risk.

#### 7.4 Summarising Key Points

As a guide to the use of LEDSM, DGRs and, where necessary or useful, WBTR this paper cannot go into too great a detail, but shown here are two requirements that would have, had they been included, brought relief to those suffering after the explosion and probably also saved lives. Both emerge from the use of LEDSM. A brief summary of what has been shown is then included:

The Advantage of Multiple Links: There should have been a hot line with a redundant extra line in case of failure of the first method of communication, between the ARU and Inspector Sexton and DLO Berry. It is vital that data is provided in a timely and trusted way. LEDSM model development would show the communication links that would be necessary and enable establishment of protocols between Enterprises (three in this case, the Fire and Rescue services, the Police command centre and the ARU). Those protocols would establish who expects what information from whom, and within what time parameters, both within each of the Enterprises and between the Enterprises. Each Enterprise would then

have its own protocols to describe how those within the Enterprise were to subsequently operate once inter-Enterprise communication had established agreed actions. It was particularly sad that the ARU confidence that there were no other terrorists was not conveyed quickly.

The Lack of Wisdom in not Defining Protocols: The "Operation Plato" protocol was instigated in the light of events in Mumbai when the Taj hotel was attacked. It had not however, been communicated that three minutes earlier the ARU had decided there were no other terrorists present in the building. Evidence has to be the basis of such decision making. One advantage of LEDSM is that when new events do come along that alter thinking, scenarios can be re-imagined so that should the event occur a second time, those involved are prepared. The LEDSM model, when implemented may be modified after an event when reactions were considered inadequate simply by discussion of how to change protocols and add links to other Enterprises in the model. Decisions are formally documented by the protocols preventing, thus, any human errors later in recording what should be done or forgetting to pass on the decision to later incumbents of the post.

**This Example Illustrates:** That LEDSM provides an easy visual way to develop communications, even when those involved are not safety-critical experts themselves, (but see Sub-section 7.5). The principle at the inter-Enterprise communication level, (Layer 2 in this case) is incorrect communication risk reduction.

The passed down protocols are an essential part of the responsibilities of those charged with providing safe environments for their staff and the general public. Through the subsequent reasoning around the protocols, the necessary minimum multiple channel network required to assure timely and correct communication will be confirmed and developed. To not apply a formal method that has, as an output, an easily understood diagram, as LEDSM does, is extremely risky. We need to refine our use of technology, much as we improve the technology itself, by striving for the best and safest products and processes.

# 7.5 Qualifications to Support Emergency Response Preparation & Implementation

It is well understood that the response of the New York Fire Department (NYFD) to the attack on the twin towers of the World Trade Center was conducted in ways that exemplified courage and leadership. One of the prominent characters in the tragedy was Battalion Chief Orio Palmer, who led the team of firefighters that reached the 78<sup>th</sup> floor of the South Tower just before it collapsed. There were radio communication problems for the emergency services at this incident, and recordings of Palmer have helped understand the problems. Palmer himself had long recognised the problems of communication, especially in tall buildings. He had an associate degree in electrical technology and had written many articles about the problems. He has been described as being one of the most knowledgeable people in the NYFD on radio communication in high-rise fires. He had even authored a training article for the department on how to use repeaters to boost radio reception during such emergencies. This shows the importance of having SQEP in a position to apply themselves to problems concerning the effectiveness of the communication plans and system design when dealing with safety and emergency issues, especially communication, as mentioned in Sub-section 3.10 with regard to Chernobyl. Although trivial in terms of complexity, it is nonetheless true that the hypothetical application of LEDSM, to the Manchester emergency response preparations for such an incident as occurred at the Ariana Grande concert, would have resulted in a much better outcome and especially if SQEP were involved.

# 8 Multiple, Flexible and Dynamic Network Protocols and DGRs

#### 8.1 Preamble

As described already, an Enterprise can link to any number of other Enterprises and in doing so should engage in the establishment of horizontal protocols. These protocols describe how the linkages to other Enterprises will work at the various levels. Clearly, if there is only one person in the Enterprise then all links are to him or her but obviously that link may be to a multi-layer Enterprise. That then will involve some negotiation as to whom in the bigger Enterprise the link is to be made, and it may be different levels are linked to when network connections to multiple Enterprise are made. It may also be the case that a single individual will link to multiple layers within an Enterprise, where the communication is to establish cause and effect or other enquiries. We next look at this aspect.

## 8.2 An Example from the Health Sector

Figure 11 shows the possible connections a WHO front-line researcher may have had in the hunt for a particular outbreak of a virus that, it later transpired, had come from infected chickens. The figure is based on the health research work of Dr Gina Samaan, see Figure 12, of the WHO Jakarta office at the time, since then with the US Centre for Disease Control' influenza division.

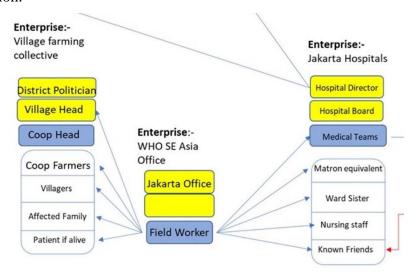



Figure 11 ~ The Potential Links of a Field Worker Researching a Viral Outbreak

This incident was previously discussed in a lecture to the 2021 Safety-Critical Systems Symposium (Hales 2021). It eventually transpired that a nurse, the first victim, had not picked the virus up from the hospital where she worked, nor from her village, both of which were high up in the list of likely places, but from a Jakarta wet market where she shopped for chicken. The virus had likely jumped species to infect her probably because in wet markets, viruses can easily move between the live species through breathing the air, contamination from defecation, or direct contact. A virus then may combine with viruses already present to create a more deadly virus. Chances are that at some point, that virus will infect a human and if it is a serious infection, it only requires one more step, the ability to transmit freely between humans, to become a pandemic.



Figure 12 ~ Dr Gina Samaan (Doctorate in Epidemiology)

Not all possible links of each Enterprise are shown in Figure 11, but the lines from the hospital director can be expected to link to many health-related Enterprises and the Jakarta office of the WHO would of course have many other links, but this can be thought of as WHO researcher Gina's LEDSM diagram for the instance of this particular virus outbreak. If it is drawn out like this, should Gina have tragically died from the infection due to the close contacts she bravely made, then at least the diagram would show a replacement worker where research was up to in an easily understood way and contacts could be re-established.

The contacts of the researcher and the protocols for the hospital Enterprise are not trivial relationships that can easily be imagined, but LEDSM diagrams assist understanding.

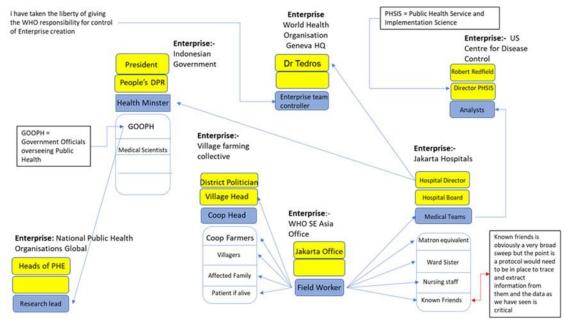



Figure 13 ~ Snapshot of a WHO Virus Outbreak Researcher's LEDSM Connections

Figure 13 shows the increasing level of complexity as we expand outwards to see connections other than Gina's direct connections. There is the potential for conflicting interests. If planned properly in advance, they can be resolved simply as engaged stakeholders see what ought to be their obligations. This is again where DGRs become useful in that they help define protocols. This method of defining in advance via use of LEDSM diagrams would enable, in this case, quicker alerting of the world to a virus outbreak. Interestingly, in this case, Gina has to talk to people at all levels because it would be beyond the powers of say, the sister in the ward, to have knowledge of all the questions that Gina may ask her staff and then give a response to Gina on their behalf.

Hence the protocols in place for the hospital would involve the sister, at a Health and Safety briefing, having alerted her nurses that, at some point unknown at the time of the briefing, they may be required to go into detail about their personal lives and habits and what they know of the personal lives and habits of their friends and other contacts, should a virus outbreak occur. This equates to a basic track and trace for when a sophisticated "Mobile App" enabled tracing may not be possible. The situation would be similar in the case of the village Gina visited too.

#### 8.3 Getting the Balance Between Safety and Security

The classic example of conflict of interests is in determining the right balance between safety and security in a nuclear plant. It is literally vital that in the event of an accident, external organisations, such as the emergency services are notified as quickly as possible, which means automatically. However, it is also equally vital that the nuclear plant is protected from terrorist or hostile government hackers. In this case of pursuing a virus outbreak, the hospital will want staff to cooperate with the WHO researcher, but in general will not want staff to talk about their work for confidentiality reasons. Planning in advance using LEDSM will ensure the researcher has access to the staff on the ward, without a long debate at the management level of the hospital about whether or not all staff or just some senior staff should be allowed to talk to her, and whether lawyers need to be present, followed by a subsequent negotiation with the researcher. A sense of urgency is of the essence in a viral outbreak as in any other emergency, by definition. Using LEDSM, most if not all internal and external protocols will have been agreed well in advance of the virus outbreak and briefed to staff.

Looking again at Figure 13, it is a snap-shot of what a LEDSM diagram for the WHO researcher would have looked like in the expanded form that shows many more stakeholders dependent on the data Gina uncovers being transmitted. The Enterprise for the village is a template exemplar as it is unnecessary to get every village head in Indonesia to sign up to protocols, just the one dealing with the issue at the time. As stated before, these relationships can be dynamic in slow time, being re-examined to ensure they are at maximum efficiency as and when changes arise within or outside the Enterprise.

There also may be a need to have separate diagrams if parallel but different issues need to be dealt with, so it may not be all that the researcher looks at. It may be replaced by a similar diagram of 'planned in advance' protocols with other Enterprises, for instance another hospital in another country where different protocols were in place if another outbreak arose while a first is unfinished. Figure 11 also shows how important the very base of the Jakarta Hospital Enterprise is, as only one of the victim's fellow nurses held information that was the clue to where the outbreak had arisen from, telling the researcher where the victim would, usually and frequently, go to pick up meat before returning to her home village.

If everyone involved in emergency and safety work had close to hand a diagram of their evolving links to other Enterprises, it could reduce quite a number of errors in accident, disaster and emergency planning and handling.

When a large number of connections are going to be involved, e.g. in a global pandemic, different protocols may need to be in place for different stakeholders.

# 9 Meeting and Adopting the Eleven Principles of Safe Software Design

In this section, we will look at eleven technical principles of best software design, as espoused by Martyn Thomas in "A View from the Stern" (Thomas 2005), but here adapted to the LEDSM method of safer data network design. That safety-related data and information issues slip so easily into the same principles as safety-related software issues, illustrates how important the task of improving data and information safety transmission is. Safety-related software is constructed in a much more formal way than other software to ensure failures requiring re-booting, or bug fixes in slow time, which are tolerable for software with less associated risk, are not included in the safety-related software program. Similarly, data and information safety systems must be constructed with a greater degree of formality than currently, in order to ensure they do not fail when they are called on during an emergency.

In many cases, simply replacing the term 'software' by 'human-machine combined data and information networks', or words to that effect, provides the initial principle, though more is discussed. It also applies to human-to-human data and information networks as we have already met in the shape of the investigations of Gina Samaan into a virus outbreak at the Jakarta hospital.

- 1. The difficulties of designing a safe 'human-machine combined data and information network', flows from the increasing complexity of the problem space, as members of the network are added, contrasted with the need for simplicity to retain comprehensibility. A pertinent observation often ascribed to Albert Einstein is, "Every system should be as simple as possible and no simpler". Modern engineering has given us an array of devices to utilise in communication systems which are, by and large, user friendly, for example the mobile phone, the laptop, the megaphone (still important for tsunami warnings). These are the equivalent of hardware in safety-related systems that require software. The data and information we transmit and receive over these systems is the equivalent of the software. As we get to know more about our world, and people have more space and time to enjoy it, negligence that leads to suffering becomes increasingly taboo. Hence the complexity of the space naturally expands to accommodate LEDSM helps to keep networks demands for almost 'perfect safety'. comprehensible to all involved, regardless of whether or not they are safety professionals.
- 2. 'Human-machine combined data and information network' transmission errors are systematic. In this case the similarity is nuanced because if LEDSM is used, the errors do become systematic, programmed in by the protocols; whereas, normally, one would consider human communication errors as random. Like software, data and information emergency network faults may only be detected years after the inter-personal connections, and computer connections, are commissioned into service, sometimes only when the actual emergency the system of data transmission was designed for arises. This is similar to how things are for software in complex safety-related systems, where many more paths, of the order of millions, may exist with most never being exercised until many years of usage have passed. Only when an emergency occurs does the fault become apparent. The difference is that data and information safety-related systems involving humans are generally less complex to analyse but when called on are required to perform a similar task, saving potentially many lives. LEDSM is an analysis tool one could use. In emergency and disaster prevention communication, some of the

problems are equivalent, in terms of being problematic to test, as is testing every path in a complex software program. Risk is many faceted and nuanced, especially by context. To commercial Enterprises, it may be primarily a function of environmental impacts and economic costs. Where humans in the Enterprise are involved as part of the system, as in the communication networks referenced here, resilience under pressure and the ability to adapt must be included. Where terrorism or military conflict is involved, networks must take account of threat, vulnerability, and consequence. The probability of failure is more appropriate in the context of reliability of machines. The risk that the environment can change continuously, especially in on-going emergency situations is one which must be addressed but with a little thought in advance, a degree of preparedness can be realised. One way to reduce the risk is by making the network more robust to failure.

**Ambiguity in language.** Solved by a protocol governing format of communications as in Hales (2021).

**Paucity of data.** Solved by establishing, during emergency communication development, what data will be expected and what will be delivered.

**Delays in transmission due to bureaucracy.** Solved by management instigating protocols that permit the personnel or systems of the lower four layers of the LEDSM model, whether compressed or not, to act in an emergency autonomously, having been trained or **developed well, in advance.** 

**Poor design of the network**. Improved by allowing all members of the network to see visually their connections with LEDSM diagrams, and thus opening up the action spaces to intellectual assessment of other possible connections.

Over-confidence encouraging resistance to any declared need for communication. Solved by analogy with electronics, such as extra redundant paths for communication and Cyclic Redundancy Check equivalents.

An absence of necessary nodes in the network, such as having a network dealing with virus experts except the one person that knows more than anyone else, the expert on the particular type of virus. In the case of the Ariana Grande concert bombing and the Überlingen air collision, a lack of sufficient effective communication channels was significant. The addition to a multi-channel radio system of mobile phones, and dedicated mobile phones, reduces the risk of important messages not getting through. Figure 14 illustrates the opportunities the Police Commander could have had, if communication had been thought through a little more, to send a message that there were no other terrorists present in the building. An advantage, for instance, of a dedicated mobile phone is that if pressure of the situation means one person cannot receive radio messages, as actively communicating to others, messages can be left, which is not a feature of many radio communications. All these issues are more apparent by diligent LEDSM planning. Note, it is not suggested this is actually the solution that should have been adopted, it is simply here to demonstrate the process.

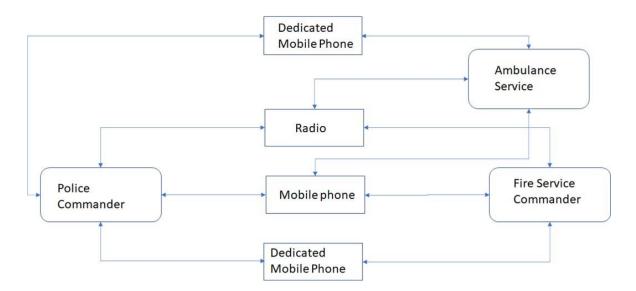



Figure 14 ~ How Increasing Emergency Communication Channels May Reduce Risks

- 3. Abstraction is the only way to conquer complexity. This is what the LEDSM model is designed to do, initially by providing a tool to envisage data and information paths, but also providing abstraction techniques, such as characterising an e-mail news source, provided to specialists that have signed up to it as a subscription service, as a single Enterprise rather than trying to draw connections to all relevant members. The abstraction is in trusting the machines to some extent, thus avoiding analysing the complexity inside them and relying on redundant systems to solve any concerns over reliability. Edsger Dijkstra stated, "...the purpose of abstracting is not to be vague, but to create a new semantic level in which one can be absolutely precise" (Dijkstra 1972). LEDSM enables such precision through providing diagrams with traceable connections rather than lists of names which may mean nothing to a third party invited to peer review safetyrelated data and information connections, and which are unlikely to be checked individually, or be difficult for a new person in the role to understand. LEDSM provides an effective training tool for those new to a role by visual explanation of communications necessary.
- 4. In data and information transmission, low defect rates and low cost are achievable together. Just as in safety-related software, though, the cost of an accident can be enormous in terms of lives lost and injuries and of course compensation for the victims, such as the millions of dollars paid out by Skyguide in compensation for the Überlingen air collision, or the billions paid by Boeing for the two Boeing 737MAX aircraft crashes (Schaper 2021). However, just like software development, early intervention can be crucial in reducing cost. The application of a visual modelling process, such as LEDSM, well in advance of emergencies assists this early intervention requirement. Also, there is the advantage that remodelling is incredibly cheap but simple to observe the effectiveness of, as in many cases one may simply add an Enterprise to the diagram and then make the necessary connections to provide even greater safety. Removal of connections to an Enterprise is equally simple.
- 5. Maximise Cohesion and Minimise Coupling is a maxim for modular software development. This applies with the LEDSM too, since obviously nobody involved in safe data and information transmission should want to be receiving information

- they do not need, nor should they want to be providing irrelevant information to others. Also, those legitimately involved should not want to share with others outside the protocol that has been agreed between those within their Enterprise and those in other Enterprises with whom protocols have been set up. The LEDSM technique enables easy discussion among members of an enterprise as to what they feel they are lacking in information and from what source they may be receiving too much information, hence enabling connections to be made or broken with protocols kept in place or modified by agreement.
- 6. Maintaining Traceability: LEDSM enables the tracing of connections to requirements, since formal protocols within an enterprise determine what type of connections should be made and why. Those connections may be discussed as to how they fulfil requirements of the top level of the Enterprise at any of the regular reviews.
- 7. Maintain Version Control: This is a hugely important technique in software development and maintenance. It is also true in the use of LEDSM. It is important that when a connection, with its agreed protocols, is established, changed, or removed, the other parties are informed of that so that they have an updated version of what their network looks like. An example of this would be a Disease Control Centre dropping a link to another Disease Control Centre at the behest of their government. This could be disastrous for some if the second Disease Control Centre thought they would be informed of a disease outbreak, but instead only learned a week later of rumours from any media outlets picking up on an internet rumour.
- 8. Testing is an experiment: Testing the data and information network is not a bad idea, "Experiments are most effective when they are designed to disprove a hypothesis" (Thomas 2005). Basically, this means that any network an Enterprise decides to build should, when tested, utilise tests that try to demonstrate that the connections they have built will NOT work. It has been shown time and time again that testing to prove a software system works simply hides the faults because the thinking necessary to find faults is not done when all one wishes to prove is that what one has constructed works. This is where investment helps. Modern disasters, such as the two Boeing 737 MAX accidents, were down to a lack of rigorous testing, dismissiveness towards safety concerns, and the process of allowing self-certification of the aircraft by the manufacturer; the equivalent, in this case, of designing the tests to prove it works, instead of trying to show where there are faults. Because emergency systems are so rarely used, reliance on statistical data, e.g. "the one exercise we did worked well", is not a very sensible path to follow. Regular rehearsal is necessary, as is network review. Exercises should include trying to prove it will not work, such as setting up radio links to brick lined stairwells in skyscrapers, a problem briefly described in Sub-section 7.5.
- 9. Safety arguments depend on sound languages. LEDSM is a form of visual language. It reduces the likelihood of: tardiness in communication, a lack of preparation for emergencies, misunderstandings within Enterprises as to intent, an absence of a sense of urgency, and misunderstandings across Enterprises as to what is and what is not available data and information. In that sense LEDSM performs the function, (to a certain extent in its own field of network communication), of a safety-critical software language such as SPARK Ada. It reduces the amount of data that can cause problems and increases the clarity of data that is passed.

- 10. Probabilistic Risk Assessment (PRA) has limited value in this context: Such an analysis relies on a belief that all causes or modes of failure have been taken into account. As stated in an earlier section, we can use the adaptation of WBA, WBTR, and this is illustrated with examples in the next section. The realistic way to reduce risks is to go through the process of assuming there are causes or modes of failure that will not have been taken into account. We can then use simple basic safety principles to analyse the needs of the system in question. Many software system safety cases in the past have used PRA and it often proves inadequate for the job, but it is especially not appropriate for data and information safety, as the variations on data communication may include language nuances between nations or a lack of understanding of the subject being communicated. An example of that can be found in some management circles, where they expect engineers to just get on with their work. This is no shame on the part of management because we cannot all be expected to know everything that occurs in an Enterprise. The risk though is that management has not fully understood the disastrous consequences of the communication system failing, so it is important to ensure that LEDSM protocols employed between layers in an Enterprise convey the urgency and importance of the work to management that the lower layers of communication will do in an emergency situation. There is also often a lack of safety back-up systems, for which probabilities might be thought of as miniscule but nonetheless, because we are dealing with human beings in systems can very easily occur. Measuring human reliability is no easy task. Much better then, to establish protocols which permit autonomous action by the lower levels of the LEDSM model than expect instructions from management at the time of the emergency.
- 11. Standards should not set unscientific targets: This means in the data and information safety context that some things can be guaranteed, but the idea that assurances can be provided that nothing can possibly go wrong is a red herring. The aim of LEDSM is to reduce risk, not imply that by adoption all possible problems are eliminated. For instance, the currency of the model an Enterprise holds should be reviewed every six months, say, to ensure scientific advances are taken on board and new Enterprises reviewed to check if there is potential benefit in communication with them. That does not mean that somewhere there will not be an Enterprise that is not on the network the Enterprise is using, that would have been useful, but LEDSM does reduce the risk. In addition, when reviewing networks, it will be important to keep in mind what the purpose of the network is, e.g. to keep all stakeholder parties aware of the emergence of a new threat. The key is to act quickly when an obvious omission has occurred and to set protocols that are scientific, i.e. rational and practical, but exclude political decisions that reduce safety. This includes not hiding information from those who need it. The same applies to other emergency and safety situations discussed, such as emergency service responses to a terrorist bombing. In planning the network, start by 'observing' the history of such incidents and the problem space in order to deduce the initial rational protocols.

# 10 Using WBTR to Establish Safer Designs and then Develop a LEDSM

#### 10.1 Introduction

WBTR is a technique derived from WBA but used as a development tool for safety-critical communication, rather than as an accident investigation tool. It is considered to be useful to reduce risks in data and information systems by assisting in the identification of what communication systems should be in place, and with who, in order to ensure safe responses to emergency situations and others where lives are at risk. It needs to be used with LEDSM in order to maximise effectiveness.

The basic idea is to look at the design of the system you intend to construct, e.g. in a typical HAZOPS it would be a chemical plant, and ask key words about the processes. In HAZOPS a question might be, "What would happen if more of substance x flowed into a vat than intended". In WBTR safe communication developments, the brainstorming should look at any proposed communication systems and ask questions such as, "What would happen if the 'phone link was out of action?" and, "Why would Firefighter A not be able to hear the Fire Marshall's command to abandon the building?". That in turn encourages participants to state formally why, for example, "Because of radio interference, the command may not be heard clearly enough". Then the brainstorming moves to 'Therefore' reasoning, e.g. "Therefore, there should be two or three Walkie Talkie channels, signal boosters, and a mobile 'phone given over to the Fire Marshall exclusively, so that interference can be dodged". The analysis may conclude there should be a spare walkie talkie held by another member of the team to ensure that a breakage, or the death in an inaccessible place of the walkie talkie holder, do not prevent the team hearing the Fire Marshall's communications. In addition, "All firefighters should carry text 'phones or pagers through which the command may pass via civilian channels in case all radio channels are blocked", may also emerge as a solution. Some basic rules, such as the use of multiple machines to back-up chosen communication routes are necessary. Figure 15 is a simple illustration of the use of three channels between two persons to give this basic, but all too often overlooked, risk reduction.

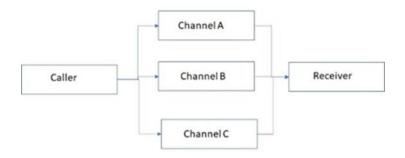



Figure 15 ~ Multiple Channels Illustrated

The first thing to do in building a safe system with potential communication problems is to identify what data is safety related. It may not be obvious, hence the use of WBTR will help. One may think the important thing is that each person knows their job but, frankly, that is just about what happened at Chernobyl, a dire communication failure that was briefly examined in the context of this paper, in Section 3.

# 10.2 An Example of the use of WBTR in the Überlingen Mid-air Collision Context

#### 10.2.1 Preamble

The following illustrates how the collision of two aircraft could have been prevented by using WBTR and LEDSM to assure the effectiveness of Zurich Air Traffic Control's night-time operations. The two techniques are effectively iterative since each time one reasons that an additional provision must be made, this naturally invites one to revise the associated LEDSM diagram connections, and that in turn will help in reasoning through what could possibly go wrong. The ease with which LEDSM diagrams can be changed makes this much simpler than one may at first think. Where safety-related communication networks are involved, the use of WBTR, along with other techniques, may produce improved Hazard Analyses.

Considering the lack of reliable probability data for human failures, WBTR may have advantages, since probability is not considered in WBTR. Only the brain-storming session comes close to assigning probabilities, but then only when thinking possibilities through. The advantage to bear in mind with WBTR is that humans are involved in most of the communication systems for which LEDSM will be used as the communication development tool. Humans are fallible. Human involvement means a high degree of complexity is inevitable, since we are complex beasts. We are prone to forgetfulness, oversight, panic, and excessive confidence in things we know less about than we ought to.

Figure 16 is a diagram of the systems involved in the air collisions at Überlingen. The first actions in developing a reasoned argument using WBTR is to draw a system diagram with connections, as illustrated. Once that is done the brainstorming can begin.

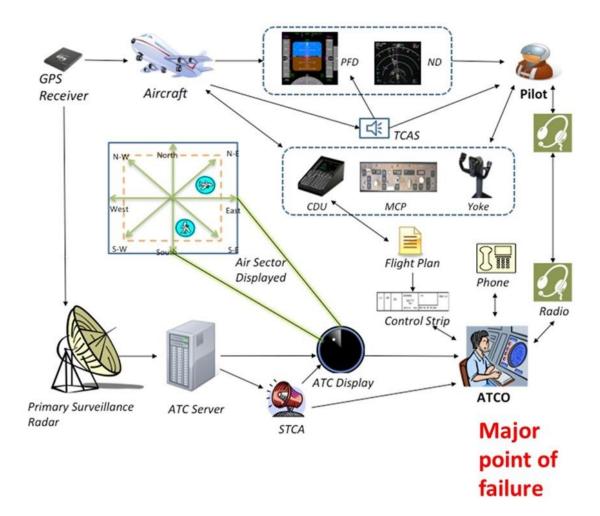



Figure 16 ~ System Nodes and Communication Links of the Überlingen Air Collision

Figure 16 looks like a complex system of systems but, using LEDSM as a safe communication development tool, it breaks down simply into four Enterprises:

- Zurich Air Traffic Control, (ATC)
- Aircraft that visit Friedrichshafen, (where an aircraft approaching becomes an Enterprise during landing, and again at take-off, but then disappears until another aircraft is taking off or landing when it too becomes an Enterprise; those are the only times during the night that Zurich ATC is required to support aircraft movements at Friedrichshafen)
- Bashkirian Airlines Flight 2937, a Tupolev Tu-154 passenger aircraft
- DHL International Aviation ME Flight 611, a Boeing 757 cargo aircraft

To establish the links between the Enterprises and within each Enterprise and the protocols involved, WBTR can be used. The WBTR will also establish what DGRs must be implemented to guarantee the best possible response and thus the most likely reduction risks. This, in a WBTR exercise would be used as the classic example of the envelope within which Zurich ATC must operate. However, in this exercise, because it is hypothetically done *a priori*, the fact that the two aircraft types and owners are now known from the actual accident, would not be relevant, they would simply be labelled 'Aircraft 1' and 'Aircraft 2'.

#### 10.2.2 Using WBTR in a Hypothetical Pre-collision Review: Stage 1

Here is an exemplar of the sort of reasoning that would help establish whether the communication system at Zurich is adequate or not and what needed to be done to improve the odds of avoiding a collision:

Why would two aircraft collide?

**Because** the avoidance procedures used were wrong. **Therefore**, all errors in procedures that could lead to a collision should be eliminated.

**Why** could current procedures be inadequate? (Note two replies to this but there may be more, these are just the relevant ones for the exercise).

Because they can be misinterpreted. Therefore, procedures must be unambiguous.

What makes us prone to writing procedures that are inherently ambiguous?

**Because** we have not fully explored the scope, we have assumed that procedures we know about are used universally. **Therefore**, the scope must be fully explored and the outputs from the examination of the extent of the scope incorporated in the procedures for universal adoption in air space under our control.

**Why** has the scope not been fully explored?

**Because** there are always more issues emerging. **Therefore**, regular reviews of the scope of procedures and related behaviours must be undertaken.

**Because** at some periods the communication systems may be down for maintenance, or due to failure, and formal procedures to deal with those occasion have not yet been adopted. **Therefore**, maintenance procedures must include ensuring the workload can still be coped with and all personnel needing to know are informed.

Why could a notified maintenance process lead to an unmanageable workload?

**Because** procedures have not been formalised. **Therefore**, maintenance processes must be formalised to the extent that, as a minimum, signatures of involved parties when maintenance is to begin and when maintenance has ended must be collected as evidence of knowledge of any scheduled degradation of service.

#### 10.2.3 Using WBTR in a Hypothetical Pre-collision Review: Stage 2

The next stage is exploration of the procedures individually. For those managing the ATC, the following should have been apparent if time invested in LEDSM/WBTR review:

**Why** would current procedures for Air Traffic Controller behaviour be inadequate? (Four answers here)

- Because, currently, rest periods are allowed for one of the two controllers but no method for the awake controller to raise an alert exists. Therefore, an alert should be installed.
- 2. **Because** the ATC is not formally made aware of when maintenance starts and ends. **Therefore**, a notification system should be put in place.
- 3. **Because** pilots may have procedures in direct opposition to another airline's procedures for TCAS, (Bashkirian prioritised ATC, DHL prioritised the TCAS). **Therefore**, global procedures must be put in place

4. **Because** a communication link to another ATC may be unusable. **Therefore**, at least one additional channel must be included.

It will usually be best practice to get two teams to examine a safety-critical communication system using WBTR, because, as can be seen, similar conclusions may come from their different approaches, but new insights may also be gained by slightly different questioning and reasoning.

### 10.2.4 Using WBTR in a Hypothetical Pre-collision Review: Stage 3

Other questions that may arise in discussions with a safety group looking at such a system might be:

Why would the ATC not hear the TCAS alert? (It was not heard on the night of the collision.)

Why would the land line telephone not work?

**Why** would the pilot disobey the TCAS instruction? **Because** some countries tell pilots to prioritise instruction from the ATC. **Therefore**, issue instruction to obey TCAS under all circumstances in governed airspace.

# 10.3 Using WBTR to Examine the Townsend Thoresen RoRo Ship Capsize

In hindsight, it would have been so easy to prevent the unnecessary deaths that occurred when the Townsend Thoresen ferry sank as it left Zeebrugge in 1987, had a WBTR approach been taken. WBTR analysis is efficient at identifying erroneous assumptions but, as has been said in the past, "It does take a wit to ask a pertinent question". Hence it is always advisable to employ safety experts in the particular field with proven abilities, SQEP, since those who will eventually use a system, while being skilful, may be over-confident that they would not make 'such a silly mistake'. The simple question, "What would cause the ferry to capsize?" appears not to have been asked or, if it was, not followed through in a logical manner to develop behaviour protocols for employees of the ferry company; protocols being an output of LEDSM.

All that was needed to be absolutely sure of the ferry never leaving port with the doors open was:

- 1. A direct link to the Boatswain to enable confirmation from him that the doors are closed
- 2. An interlock detection system that provided a light on the Captain's desk showing the doors are fully closed.
- 3. A protocol sheet, much as airline pilots have check lists, that ensures the Captain will not set sail without all the required actions being completed.

## 11 The Benefits of LEDSM

#### 11.1 Preamble

In summary, LEDSM will result in what have been commonly called Memoranda Of Understanding (MOUs). These will consist of affirmed Dependency/Guarantee

Relationships. The protocol is a set of one or more guarantees that accurate data will be provided in a timely fashion to another that is dependent on that data. The associated techniques of system and design analysis ensure that the need for extra channels, where there is the potential for one communication channel to fail, is explored. LEDSM diagrams provide an easy to comprehend, visual expression of the connections at any one time.

Provided here is a list of some of the benefits of LEDSM used in conjunction with WBTR. LEDSM offers a number of benefits to those dealing with many complex safety-critical communication requiring systems. Primarily, potentially catastrophic situations can be averted by reducing miscommunication risks. The benefits are divided into three categories, End User, Investor/Management, and Safety Engineering.

- End Users of a data network will be able to gain situational awareness of the nature of the network that is producing their data and understand whether it is adequate. The ability to keep this awareness dynamically as the network morphs will be helpful.
- The Investors in, and Management of, the Enterprise will be able to understand the limitations and capabilities of the network to deliver essential safety-related data and information.
- Those developing systems with safety related aspects will find it effective in improving Safety Engineering and safety assurance of networked data driven systems, especially where there are humans in the loop.

#### 11.2 End User Benefits of LEDSM

- Its graphic nature offers easy-to-understand confirmation to users that their needs are satisfied.
- Network graphics can be divided up, so that any individual need only focus on the part of the network relevant to their own role.
- It easily highlights omissions to those checking that they are in touch with who they need to receive or send data to.
- It is flexible, and any network can easily be expanded or reduced when new stakeholders come or leave (although, of course, it will usually be necessary to add in new expertise if an essential contributor to one's network leaves).
- Each level communicates directly to someone trained and capable in understanding the science and issues associated in other Enterprises, peer knowledge thus increases.
- It helps stakeholder Enterprise staff to identify their peer groups, and avoid delays in communication.
- Off-line (and for their own peace of mind), researchers, politicians, engineers, scientists, medics, and commercial businesses can generate their own maps of their networks at levels of granularity that are different from those handed down by protocols within their Enterprise. LEDSM thereby enables them to see how, with some thought applied, they can propose a case, for instance, to the higher levels vertically above them in their Enterprise, for further communication links to be formally established with Enterprises through horizontal protocols.

## 11.3 Investor/Management Benefits of LEDSM

- It is system neutral, being applicable in many situations.
- Network graphics from new relevant Enterprises are easily integrated.

- It facilitates the development of protocols that dictate the primary content of safe communication and in doing so reduces risks. These can be either vertical within an Enterprise or horizontal with other Enterprises. They facilitate the creation of rules that are important to prevent *laissez-faire* approaches to mapping communication needs for emergency situations.
- The LEDSM diagram can be condensed or expanded as required by the size of the Enterprise or the particular state of the project in its lifecycle.
- It provides a negotiating tool with which to demonstrate needs to recalcitrant provider stakeholders, and shows the benefits that they would receive.
- Enterprises needing data can identify missing information sent to them and will have already agreed on what basis they can proceed when data is less than the maximum desirable. Equally, data senders will be confident that the maximum information that can be extracted, from what they send, will be presented to all potential users without needing to be concerned that their data will be ignored as lacking detail, action levels having already been agreed in advance.
- LEDSM, WBTR and DGRs for these communication networks are low cost to implement.
- The use of LEDSM can reduce post disaster costs. Increasingly, it is the case that Post-Traumatic Stress Disorder (PTSD) leaves emergency workers and all those who have experienced traumatic events at close hand, with long term stress. The stress results in physical illness, mental health problems, many days of absence due to poor sleep and stress, and little option but to sue their employer for compensation. As has been shown, particularly in the simple case of the suicide bombing of the Ariana Grande concert, the probability of effective emergency responses is increased by planning using the LEDSM tool *a priori* to analyse possible situations and responses. Hence emergency personnel and victims will be less likely to experience ill-feelings of not having done enough for victims to get them necessary help. Thus, they will be less stressed after the event and thereby there will be less cost to the involved organisations in terms of compensation, court proceedings and lost days of work by affected employees.

# 11.4 Safety Engineering Benefits of LEDSM

- It overcomes the lack of, or poor, communication planning, which is so often responsible for accident deaths.
- It integrates the concepts of WBTR and DGRs to further reduce risks.
- It uses the principle of the proven technique HAZOPS to assist in identification of data flows through WBTR brainstorming.
- It facilitates the development between people, between people and systems, and between stand-alone systems, of DGRs. This secures a mutual understanding of needs and capabilities in safety-related situations.
- It helps to focus an Enterprise on their organisation's safety communication protocols to reduce unnecessary distraction, and to protect the integrity of proprietary data while being open on safety issues.
- When alerts are necessary, those first to identify the arising problem can rapidly disseminate information, having already identified in advance the peer group and the extent of data release permitted by their Enterprise.
- If a noted expert in a particular field passes on, moves on, or retires, the retention of a rapid alert system to deal with emerging threats is facilitated.

- It considerably lowers the level of risk associated with miscommunication and a lack of communication and therefore can be used as far as practicable, where "ALARP" (As Low As Reasonably Practicable) principles are expected.
- SQEP, i.e. Suitably Qualified and Experienced Personnel, will find LEDSM easy to understand and implement.
- The need for redundant communications and protocols to ensure extra channels are acquired, and used, is made obvious when risks for those supervising safety-critical operations are analysed. As a generalisation, all supervisors of safety-critical Enterprises should have more than one communication channel with supervisors of other Enterprises.
- It integrates stakeholder diagrams well with high-level system design, thus helping to eliminate omissions.

LEDSM used in conjunction with WBTR offers a way to cope with the enormous amounts of data, which will continue to increase, by offering a more-formal approach to development. Referring to the massive flow of COVID-19 information, misinformation, and disinformation influencing public health measures, it has been stated that, "We are concurrently inundated with a global epidemic of misinformation, or an infodemic, primarily being spread through social media platforms; its effects on public health cannot be underestimated. Thus, the pandemic provides an opportunity to develop infodemic management approaches." (Sauer et al. 2021). LEDSM and WBTR maybe seen as one such infodemic management approach.

Time and time again we see that the problem in an accident or incident, where deaths and serious injuries have occurred, was the poor communication. Our systems have become safer and safer, and one only has to look at the huge reduction in airplane crashes over the decades to see that. This is the reason LEDSM and WBTR are proposed, to encourage owners of systems, especially those that involve human beings, to take a more-formal approach to developing the procedures that are to be put in place to prevent fatal accidents and emergency responses.

Let us all try to end this global epidemic of misinformation, disinformation and, especially for engineering safer emergency systems, the failure to provide accurate and timely information in emergency prevention and response systems involving humans.

## 12 Conclusions and Future Work

The Layered Enterprise Data Safety Model, LEDSM, offers a method of bringing the precision of electronic interface design to Emergency Service, Industrial Process, Engineering Design, and Military Command responses. Protocols also offer the precision of electronic safety-critical system development by mirroring how Dependency/Guarantee Relationships work. The use of WBTR, Why/What Because Therefore Reasoning, draws on hazard analysis and accident investigation techniques to establish design criteria in a formally documented way which may affect the design of a system of systems by reducing risks through the introduction of additional requirements. It is a technique that can easily be used iteratively when the relevant LEDSM or reports of usage indicate change is necessary.

Currently, an Enterprise would be expected to develop LEDSM diagram using standard graphic tools. However future work may include the development of a specific tool with drop down menus to assist the distribution of diagrammatic representations of expectations, roles and connections. That will, thus, enable rapid assimilation by personnel of the

requirements of their roles, confidence in actions to be taken, and the protocols to follow; it will also facilitate adjustments of networks when change becomes necessary, or when tasks like maintenance need to have adaptations. Changes can be readily explained and graphically displayed to users in order to avoid poor outcomes from temporary disruption.

#### Acknowledgments

The author thanks Mike Parsons and John Spriggs of the SCSC for their support and advice, and the anonymous reviewers for their thought provoking and helpful comments.

The image of Dr Gina Samaan at Figure 12 was derived from a photograph on the website of ANU, The Australian National University, who provided the author with permission to use the image in a journal article, conference paper, or other scholarly publication.

The diagram in Figure 16 comes from a work of the United States Government authored as part of the official duties of employees of the National Aeronautics and Space Administration. No copyright is claimed, but all other rights are reserved by the United States Government.

#### References

2002 Überlingen mid-air collision. (2022). In *Wikipedia*. <a href="https://en.wikipedia.org/wiki/2002\_%C3%9Cberlingen mid-air collision">https://en.wikipedia.org/wiki/2002\_%C3%9Cberlingen mid-air collision</a>. Accessed 20<sup>th</sup> June 2022.

Causalis. (2018). *Why-Because Analysis* Causalis Limited. <a href="https://www.causalis.com/20-analytics/10-WBA/">https://www.causalis.com/20-analytics/10-WBA/</a>. Accessed 20<sup>th</sup> June 2022.

Collins, D. (2021, July 25). *Manchester Arena terror attack: the lost two hours*. The Sunday Times. Available at: <a href="https://www.thetimes.co.uk/article/manchester-arena-terror-attack-the-lost-two-hours-0b923sd3p">https://www.thetimes.co.uk/article/manchester-arena-terror-attack-the-lost-two-hours-0b923sd3p</a>. Accessed 20<sup>th</sup> June 2022.

Dijkstra E. (1972). *The Humble Programmer*. The 1972 Turing Award Lecture, in Communications of the ACM 15 (10), October 1972: pp. 859–866

Dilmaghani, B. and Rao, R. (2009). A systematic approach to improve communication for emergency response. In Proceedings of the 42nd Hawaii International Conference on System Sciences, Waikoloa. IEEE. doi: 10.1109/HICSS.2009.39

Engineering Council. (2021). *Guidance on Sustainability for the Engineering Profession*. Available at: <a href="https://www.engc.org.uk/media/3555/sustainability-a5-leaflet-2021-web\_pages.pdf">https://www.engc.org.uk/media/3555/sustainability-a5-leaflet-2021-web\_pages.pdf</a>. Accessed 20<sup>th</sup> June 2022.

Farrar J and Ahuja A. (2021). *Spike: The Virus vs. The People - the Inside Story*. Profile Books, London.

Faulkner A, and Nicholson M. (2020). *Data-Centric Safety: Challenges, Approaches, and Incident Investigation*. Elsevier.

Hales N. (2020). Formalising Communication on Potentially Catastrophic Safety Projects, In The Safety-Critical Systems Club Newsletter, Volume 28, Number 2. Available at: <a href="https://scsc.uk/scsc-158">https://scsc.uk/scsc-158</a>. Accessed 20<sup>th</sup> June 2022.

Hales N. (2021). *Data Safety in Virus Outbreaks: Lessons Learnt and Recommendations*, In Proceedings of the 29<sup>th</sup> Safety-critical Systems Symposium. Available at: <a href="https://scsc.uk/rp161.11:1">https://scsc.uk/rp161.11:1</a>. Accessed 20<sup>th</sup> June 2022.

Higginbotham A. (2019). *Midnight in Chernobyl*. Transworld Publishers.

- HMS Sheffield (D80). (2022). In Wikipedia. <a href="https://en.wikipedia.org/wiki/HMS\_Sheffield\_(D80)">https://en.wikipedia.org/wiki/HMS\_Sheffield\_(D80)</a>. Accessed 20<sup>th</sup> June 2022.
- Huang J and Lien Y. (2012). *Challenges of emergency communication network for disaster response*. 2012 IEEE International Conference on Communication Systems (ICCS) pp. 528-532, doi: 10.1109/ICCS.2012.6406204
- ISO/IEC. (1994). Information technology Open Systems Interconnection Basic Reference Model: The Basic Model. (ISO/IEC 7498-1:1994). ISO Geneva https://www.iso.org/
- Kermit Tyler. (2021). In *Wikipedia*. <a href="https://en.wikipedia.org/wiki/Kermit\_Tyler">https://en.wikipedia.org/wiki/Kermit\_Tyler</a>. Accessed 20<sup>th</sup> June 2022.
- Manoj BS, and Baker AH. (2007). *Communication challenges in emergency response*. In Communications of the ACM, Volume 50, Issue 3 pp. 51-53, doi: 10.1145/1226736.1226765
- Martin J. (2006). The Meaning Of The 21<sup>st</sup> Century: A Vital Blueprint For Ensuring Our Future. Riverhead Hardcover.
- MS Herald of Free Enterprise. (2022). In *Wikipedia*. <a href="https://en.wikipedia.org/wiki/MS">https://en.wikipedia.org/wiki/MS</a> Herald of Free Enterprise. Accessed 20<sup>th</sup> June 2022.
- Pervez F, Qadir J, Khalil M, Yaqoob T, Ashraf U, and Younis S. (2018). *Wireless technologies for emergency response: A comprehensive review and some guidelines*. IEEE Access, Volume 6 pp. 71814 71838. doi: 10.1109/ACCESS.2018.2878898
- Sauer, M. A., Truelove, S., Gerste, A. K., and Limaye, R. J. (2021). *A Failure to Communicate? How Public Messaging Has Strained the COVID-19 Response in the United States*. Health security, 19(1), 65–74. https://doi.org/10.1089/hs.2020.0190
- Schaper D. (2021, January 8). *Boeing To Pay \$2.5 Billion Settlement Over Deadly 737 Max Crashes*. NPR: National Public Radio. Available at <a href="https://text.npr.org/954782512">https://text.npr.org/954782512</a>. Accessed 20<sup>th</sup> June 2022.
- ScienceDirect. (2022). *Dependency Relationship*. Available at <a href="https://www.sciencedirect.com/topics/computer-science/dependency-relationship">https://www.sciencedirect.com/topics/computer-science/dependency-relationship</a>. Accessed 20<sup>th</sup> June 2022.
- SCSC, Safety-Critical Systems Club. (2016). *Data Safety Guidance*. Version 1.3. Available at https://scsc.uk/scsc-127A. Accessed 20<sup>th</sup> June 2022.
- SCSC, Safety-Critical Systems Club. (2019). *Data Safety Guidance* Version 3.1. The Abstract is available at <a href="https://scsc.uk/scsc-127D">https://scsc.uk/scsc.uk/scsc-127D</a>. Accessed 20<sup>th</sup> June 2022.
- Shaw. S. (2022). *The OSI model explained and how to easily remember its 7 layers*. NetworkWorld. Available at: <a href="https://www.networkworld.com/article/3239677/the-osi-model-explained-and-how-to-easily-remember-its-7-layers.html">https://www.networkworld.com/article/3239677/the-osi-model-explained-and-how-to-easily-remember-its-7-layers.html</a>. Accessed 20<sup>th</sup> June 2022.
- Thomas M. (2005). *A View from the Stern*. Safety-Critical Systems Club Newsletter, Volume 14, Number 2, January 2005. Transcript available at <a href="https://scsc.uk/r77.2">https://scsc.uk/r77.2</a>. Accessed 20<sup>th</sup> June 2022.
- UKMoD. (2007). Safety Management Requirements for Defence Systems. (DEF.STAN.00-56/4). UK Defence Standardization, June 2007.

Why–because analysis: Example. (2006). In *Wikipedia*. <a href="https://en.wikipedia.org/wiki/Why%E2%80%93because\_analysis#Example">https://en.wikipedia.org/wiki/Why%E2%80%93because\_analysis#Example</a>. Accessed 20<sup>th</sup> June 2022.