1

An IEC 61508 Viewpoint on the Safety Assessment of Railway Control Systems

Derek Fowler¹ and Alasdair Graebner²

- 1. Independent Safety Engineering Consultant, Reading, UK
- 2. Railway System Engineer, UK

Abstract

An article entitled "An IEC 61508 Viewpoint on System Safety in the Transport Sector" in the July 2022 edition of the Safety-critical Systems eJournal, proposed a way of thinking about the safety assessment of transportation systems that is based on the fundamental principles of international functional-safety standard IEC 61508. Then, in a second article (January 2023), an operational example from Air Traffic Management (ATM) was used to outline how an IEC 61508 approach to safety assessment could be applied to the ATM sector. Now, in this article, the example of a new, moving-block Automatic Train Control system, for a hypothetical Metro, is used to outline how an IEC 61508 approach to safety assessment could be applied to the safety assessment of railway control systems in general.

1 Introduction

1.1 Background

IEC 61508—"Functional Safety of Electrical/electronic/programmable electronic Safety-related Systems" (IEC 2010)— is probably the most widely-accepted, international generic standard on functional safety. Although its ancestry can be traced back to process industries, the intention behind the Standard has always been to provide a solid, comprehensive basis for adaptation, as necessary, to meet the needs of a wide range of industry sectors.

In the first of three related articles, Fowler (2022) proposed 'a way of thinking' about the assessment of the various safety-related systems deployed in the Transport sector — especially commercial-aviation and rail applications — based on the key principles and safety lifecycle set out in Parts 1 and 4 of IEC 61508.

A follow-up article (Fowler and Fota, 2023) then took the example of an innovative Air Traffic Management (ATM) operational concept and used it to outline how an IEC 61508 approach to safety assessment could be applied effectively to the ATM sector, and what the results thereof might look like, starting with the concept of the traffic in the airspace being (what IEC 61508 calls) the Equipment Under Control (EUC).

This article now takes a similar approach but with the example of a new, moving-block Automatic Train Control (ATC) system for a hypothetical Metro; this is used to outline how an IEC 61508 approach to safety assessment could be applied effectively to the

Railway sector in general, and what the results thereof might look like, starting with the concept of the movement of trains around the railway being the EUC.

It is important, at this stage, to clarify five features of the article, as follows:

Firstly, it is generic in its approach and is not a case study of a particular project.

Secondly, due to the vast amount of detail that would be involved in a full system safety assessment of this kind, it is not an exhaustive, rigorous study — rather, only examples of the outputs of the relevant phases of the IEC 61508 safety lifecycle are provided, sufficient to give insights into the processes involved.

Thirdly, it is not the intention to prescribe IEC 61508-compliant processes for railway applications — rather, it is to use the lifecycle cycle model from Part 1 of IEC 61508 (IEC 61508-1) to shape thinking about system safety assessments away from a mindset that, in the past at least, "focussed too much on system reliability and not enough on system functionality, contrary to, inter alia, the most basic principles of the international functional-safety standard IEC 61508" (Fowler 2022).

Fourthly, in line with the approach taken in the two previous articles in this series, i.e. Fowler (2022) and Fowler & Fota (2023), it is not the intention to carry out a detailed compliance assessment of current railway safety standards and practices against IEC 61508. That said, it is worth drawing attention here to the following, rather bold, statement in the latest version of EN 50126-1 (CENELEC 2017):

"EN 50126 forms part of the railway sector specific application of IEC 61508. Meeting the requirements in this European Standard, together with the requirements of other suitable standards, is sufficient to ensure that additional compliance to IEC 61508 does not need to be demonstrated".

and to the findings of Fowler (2015), which suggested that the version of EN 50126, applicable at that time (1999), fell well short of compliance with the most basic principle of IEC 61508, which is outlined in Sub-section 1.2 below. Suffice it to say that, to date, we have found no evidence to show that the CENELEC (2017) statement is justified in today's, increasingly-automated railway environment, but would be happy to hear from any readers as to how, and where, current railway standards do meet the particular IEC 61508-1 requirements presented in this paper, should that be the case.

Fifthly, whereas numerous references are made to parts of IEC 62260, *Urban Guided Transport Management and Command/Control Systems (UGTMS)*, the use of this standard (IEC 2014) is simply and solely as a convenient source of information that would otherwise have to be derived from scratch, e.g. the very large number of generic system functions described in Sub-section 4.6 below.

1.2 The IEC 61508 Viewpoint

Part 4 of IEC 61508 (IEC 61508-4) defines Functional Safety as being:

"that part of the overall safety relating to the EUC / EUC Control System that depends on the correct functioning of the safety-related systems and other risk-reduction measures".

It is founded on the IEC 61508 fundamental principle that:

- where there exists an Equipment Under Control (EUC)¹, with its associated Control System², which is *inherently* hazardous to the environment in which it operates; then
- Safety-Related Systems (SRSs)³ and/or Other Risk-reduction Measures (ORRMs) need to be developed, in order to *reduce*, to a tolerable level, the inherent risk presented by the EUC.

This simple principle of risk reduction is fundamental to IEC 61508 and is illustrated in the risk graph of Figure 1, which itself is derived directly from Figure A.1 of Part 5 of IEC 61508 (Fowler 2022).

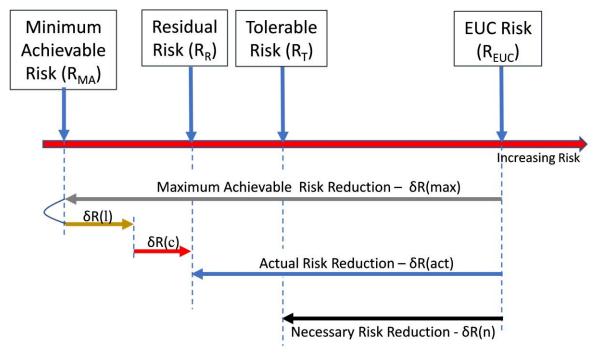


Figure 1 ~ Risk Graph

The inherent (or unmitigated) EUC Risk (R_{EUC}), provides a (usually theoretical) reference point that takes *no* account of the possible risk reduction afforded by any SRSs / ORRMs, and Necessary Risk Reduction ($\delta R(c)$) is the amount of risk reduction that must be *achieved* by the SRSs / ORRMs in order to ensure that the Tolerable Risk is not exceeded.

Residual Risk (R_R) is the risk that is *actually* achieved for the EUC, with *full* account of the risk reduction afforded by the SRSs / ORRMs now taken into account, and depends on three properties of those SRSs / ORRMs:

- their functionality and performance, which determine the maximum achievable risk reduction $\delta R(max)$, if (theoretically) the SRSs / ORRMs never failed;
- their reliability, in terms of the likelihood of their failure to function at all, and thereby reducing the achievable risk reduction by an amount $\delta R(l)$; and

_

¹ "Equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities" (IEC 61508-4)

² "System that responds to input signals from the [EUC] ... and/or from an operator, and generates output signals causing the EUC to operate in the desired manner" (IEC 61508-4) but without specific regard to the safety of that operation.

³ Designated system that both: implements the required safety functions necessary to achieve or maintain a safe state for the EUC; and is intended to achieve, on its own or with other safety-related systems and 'other risk-reduction measures', the necessary safety integrity for the required safety functions (IEC 61508-4).

• their integrity, in terms of the likelihood of their operating corruptly (i.e. spuriously or incorrectly), and thereby introducing a new source of risk of $\delta R(c)$.

Hence, given that the unmitigated EUC Risk (R_{EUC}) would be *many* orders of magnitude greater than the Tolerable Risk (R_T), the inescapable conclusion is that we must first specify SRSs / ORRMs that are proven to have sufficient functionality and performance to achieve a risk *reduction* in the absence of failure ($\delta R(max)$) that is greater than what is "necessary" ($\delta R(n)$), before considering any risk increase caused by such failures.

That is the IEC 61508 viewpoint, on which the remainder of this article is based.

2 Scope

Like Fowler (2022), the scope of this article is limited to the initial phases of the IEC 61508 safety lifecycle, which result in the specification of detailed *functional safety requirements*⁴ and *safety integrity requirements* necessary and sufficient for the subject SRSs / ORRMs to achieve a tolerable level of risk for the EUC.

The relevant phases are shown in Figure 2, overleaf, which is based on Figure 2 of IEC 61508-1 (IEC 2010), with the following modifications:

- Phases 10 and 12 to 14 have been omitted since they address requirements realisation and, therefore, fall outside the scope of this article;
- Phases 6 to 8 have been omitted as they cover only planning for the realisation phases;
- a summary of the main outputs of each phase has been added; and
- the specification of safety requirements for ORRMs, in Phase 11, falls *within* the scope of this article, even though it is outside the scope of IEC 61508 itself.

It should be noted also that IEC 61508's use of the term "E/E/PE (System) — Electrical/Electronic/Programmable Electronic (System)" — was felt to be too specific and limiting for the purposes of this article; therefore, the more general term "safety-related system (SRS)" is used instead herein so as to allow human and procedural elements to be included as well as (and possibly instead of) technical equipment⁵.

In line with Fowler (2022), it is expected that the resulting system safety requirements would be sufficient to ensure that:

- under all *normal* operating conditions⁶, a fully-functioning railway control system would be capable of mitigating all potential EUC hazards⁷, such that at least a tolerable level of EUC risk would be achieved;
- a fully-functioning railway control system would be able to continue to mitigate potential EUC hazards, under all *abnormal* operating conditions⁸ without a significant increase in the achievable level of EUC risk;

⁴ The term *functional safety requirements* was coined in Fowler (2022) in preference to the (arguably ambiguous) IEC 61508 term of *safety functions requirements*; it covers safety requirements for both functionality (what has to be done) and performance (how well it has to been done).

⁵ IEC 61508-1, Sub-section 1.2, Note 2 states that "...a person can form part of a safety-related system".

⁶ That is all those conditions that are expected to occur on a day-to-day basis (Fowler 2022).

⁷ That is, those hazards that are *inherent* in railway operations *before* any safety-related systems are provided in order to mitigate them (Fowler 2022)

⁸ That is those conditions that are expected to occur less frequently but under which the ATC system is expected to continue without significant degradation of its primary functionality or performance.

• the causes and consequences of *failure* conditions, within the subject railway control system, are controlled such that the overall achievable level of EUC risk would remain at least tolerable.

As we work herein through these lifecycle phases for the subject railway operations, it might appear that some of the steps could be simplified by, for example, subsuming them into other steps. Indeed, IEC 61508 allows for this to be done, where applicable, but, for the purposes of this article, we decided to adhere exactly to the lifecycle, which was detailed previously in Fowler (2022), except where indicated otherwise in the Sections below.

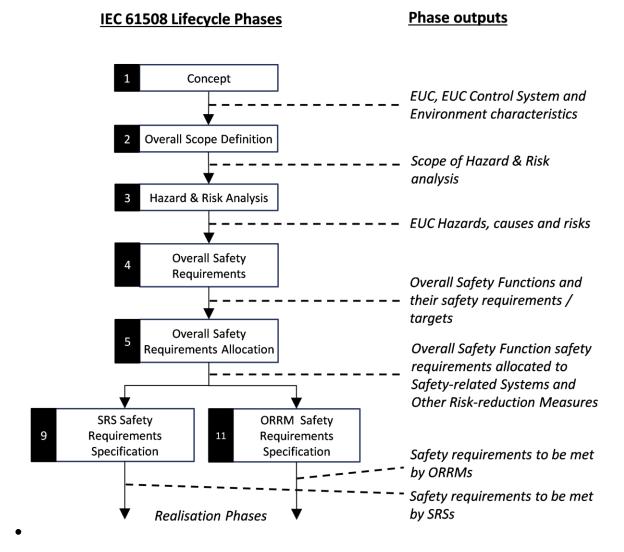


Figure 2 ~ Applicable IEC 61508 Overall Safety Lifecycle

3 Operational Context

It is assumed that a new Automatic Train Control (ATC) system will replace a conventional, fixed-block signalling system (including automatic train protection), on a hypothetical existing Metro.

thescsc.org SCSC scsc.uk

The ATC system will be based on the Communications-based Train Control (RailSystem 2022) concept in which real-time, train-control information (based on radio communications), and moving-block signalling principles, are used to increase line capacity (by reducing the headway between trains travelling on the same line), and to minimise the amount of trackside equipment, *without* any degradation in the safety of the railway operations.

Conceptually, railway control systems (including our ATC system) can be thought of as comprising the following:

- Automatic Train Supervision (ATS): ensures the safety of all trains by continuously detecting the presence, or absence, of trains and (where applicable) transmitting safety speed and distance data from the wayside; by applying the correct settings to infrastructure and signalling assets; and by directing both the movement and movement authority for each train formed to deliver a timetabled service as requested by ATR;
- Automatic Train Regulation (ATR): interprets the timetable and delivers the planned service; continually monitors the progress of trains, detecting when trains are running "off timetable"; and regulates the progress of a train, or trains, to bring services back in line with the timetable;
- Automatic Train Operation (ATO): receives information from the signalling system regarding movement authority and required speed profile; and causes the train to proceed when in an automatic driving mode; and
- Automatic Train Protection (ATP): continuously compares the actual train speed with the safety speed limit applicable at that time for the section occupied by the train; and causes the train to emergency brake in the event of an infringement.

In general, ATP and ATS are considered to be "vital" systems on the basis that their primary purpose is *accident prevention* and on which the safety of the railway critically depends — in IEC 61508 terms, they would fall into the category of safety-related systems. The purpose of ATO and ATR, on the other hand, is *primarily* the efficient running of the railway though, as we will see in Sub-section 4.6.6 below, ATR and/or ATO might also make some positive contribution to safety.

The level of automation for a fully-functioning, passenger-carrying train is assumed to be *semi-automated*, or GOA3, which is defined in the UGTMS standard (IEC 2014a) as follows:

"The driver is in the front cabin of the train observing the guideway" and stops the train in the case of a hazardous situation. Acceleration and braking are automated, and the speed is supervised continuously by the [ATC] system. Safe departure of the train from the station is the responsibility of the operations staff (door opening and closing may be done automatically."

In effect, the control of train movements, i.e. our EUC, is fully automated whereas other areas of safety concern, such as managing the platform-train interface, are not. Even so, the choice of a GOA3 system here still presents a major challenge for this, and all similar, advanced-technology safety assessments¹⁰; as pointed out in Fowler (2022), regarding the introduction of "self-driving" cars, it would be naïve to assume that replacing ("unreliable") human operators by supposedly more-reliable computer-based systems

_

⁹ Also known as the permanent way

¹⁰ Clearly, removing the driver from the cab (GOA4) would provide an even greater challenge; it would, however, also introduce further complexity that would be difficult to handle within this article, without adding much to its key message.

would lead directly to fewer accidents without *first* assessing whether those systems would be capable of matching the traditional skills and experience of humans in equivalent transportation roles.

4 Safety Assessment

4.1 Concept (IEC 61508-1 Phase 1)

4.1.1 Aim

The aim of Phase 1 is to gather as much information about the *Equipment Under Control* (EUC), its *Environment*, and the *EUC Control System*, as is necessary and sufficient to enable the other safety lifecycle activities to be satisfactorily carried out.

It is important to note that, as an enabling activity, this would be a precursor to, but not form part of, the safety assessment *per se* and would require substantial operational and systems-engineering specialist input, relevant to each specific application. In practice, such material may be found in a typical *Operational Concept* document.

4.1.2 EUC

As with any other railway-signalling application, we can understand the EUC as being, in general, the movement of trains around the rail network, for whatever purpose. This understanding is consistent with the core IEC 61508 principle that the EUC is the main source of hazards, the mitigation of which Safety Related Systems (SRSs) and/or Other Risk-reduction Measures (ORRMs) are provided, to achieve a tolerable level of EUC risk.

The key inherent properties of the EUC that we would need for a full safety assessment are as follows:

- Train types:
 - o ATC-equipped passenger-carrying trains
 - o ATC-equipped engineering trains, in various formations
 - "Alien" trains, i.e. not ATC equipped;
- Passenger-carrying train properties:
 - o Configuration: e.g. 7 cars, with open gangways, operating as a single unit
 - o Train length
 - Tare mass
 - o Power: e.g. electric 3rd rail 750V DC, running rail return
 - In service motoring and braking characteristics
 - Emergency braking capability
 - Passenger capacity;
- Railway system properties:
 - Fleet size
 - o Target peak trains per hour (timetabled in each direction).

4.1.3 Environment

IEC 61508 defines the "environment" for the EUC in terms that include its physical, operating, legal and maintenance properties.

The environment properties for the subject ATC operations, which determine the functionality, performance and integrity *required* of the ATC system, usually include:

- Weather conditions, e.g. visibility and rail icing, and frequencies thereof;
- Poor rail adhesion, e.g. leaf fall on to track;
- Flood risk, which for the purposes of this article is assumed to be negligible;
- Track parameters, as follows:
 - o total running length (excluding depots & sidings)
 - o percentage of the track that is underground
 - o maximum line (design) speed
 - o number and details of stations, above and below the surface
 - o number and details of depots
 - o number and details of sidings
 - o types and layout of demandable elements, e.g. points & controlled crossings, and non-demandable elements, e.g. diamond crossings
 - o availability of secondary train detection and wayside signals for alien trains;
- Properties of individual stations, including:
 - o platform lengths
 - o the presence (or otherwise) of platform-screen and platform-end doors (both are assumed to be present)
 - o the platform-train interface (PTI).

4.1.4 EUC Control System

Given the above interpretation of the EUC as being the movement of trains around the rail network, we can view the EUC Control System as being the functional system (comprising people, procedures and equipment), whose primary aim is to control that movement in the desired manner *and* facilitate the embarkation and disembarkation of passengers.

In its basic form, IEC 61508 generally makes a distinction between the EUC Control System and the Safety Related Systems (SRSs) that are required additionally in order to reduce the risks that are inherent in the operation of the EUC.

Fortunately, IEC 61508-1 also permits parts, or all, of an EUC Control System to be considered to be safety-related, *provided* they are subject to the appropriate requirements of the Standard (Fowler 2022) and, therefore, the need for rigid distinctions to be drawn between what is vital and non-vital is obviated.

What *is* important from an IEC 61508 perspective, is the relationship between the EUC and the EUC Control System, which is indicated in Figure 3.

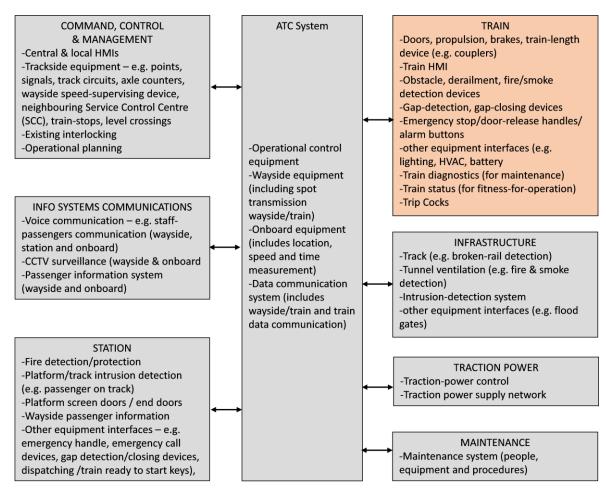


Figure 3 ~ Logical System Relationships

Strictly speaking, Figure 3 necessarily shows only the physical attributes of individual trains whereas, the EUC is defined, at the more conceptual level of Sub-section 4.1.2, as the general *movement* of such trains around the rail network. It is important to note also that, although the allocation of the detailed items in Figure 3 to the various system elements might vary slightly, case-to-case, the following provisions always apply:

- the ATC element is the *only* one for which Safety Requirements are actually derived;
- Safety Requirements are *not* derived for any items that form part of the basic Train vehicular element¹¹ since it is assumed that their safety would have been established through a prior safety assessment / monitoring process of the old signalling system;
- Safety Requirements are also *not* derived for any items that form part of any *non*-ATC EUC Control System elements; however, in the event that the safety of ATC operations depends on an *assumption* of the safety integrity of any such items being more stringent than 10⁻⁵ dangerous failure per hour (or low-demand / on-demand equivalent) then those items must be deemed to be safety-related see Sub-section 3.5.2 of Fowler (2022).

¹¹ Except for any train-mounted ATC items

4.2 Overall Scope Definition (IEC 61508-1 Phase 2)

4.2.1 Aim and Objectives

The aim of Phase 2 is to define the scope of the Hazard and Risk Analysis, which will be carried out in Phase 3.

It seeks to achieve that aim through determining the boundary of the EUC / EUC Control System and its Operational Environment and, within those constraints, specifying the scope of the Hazard and Risk Analysis.

This is particularly important when, as we are doing in this article, assessing the safety of a change to an existing railway operation and/or systems so as to identify, and exclude, the unnecessary safety assessment of those elements that are not affected by the change. It should be noted, however, that we can do this only in general terms herein because of the necessarily generic nature of the operational context for which this example safety assessment is being carried out.

4.2.2 Boundary Constraints

For the purposes of this safety assessment of ATC operations, the train movements, which constitutes the EUC, are *only* those that:

- occur within the specified ATC signalling-system boundary; or
- involve the *transfer* of trains to/from any adjacent signalling areas, in accordance with the required boundary conditions; or
- involve the *transfer* of trains to/from any adjacent, non-signalled areas, e.g. depots, in accordance with the required boundary conditions.

4.2.3 Scope of the Hazard and Risk Analysis

Subject to the above boundary constraints, the scope of the Hazard and Risk Analysis shall *include* all hazardous events that are *inherent* in:

- the general movement of trains under normal, abnormal and failure conditions;
- the transfer of passengers, on and off the train, at a station, from and to the platform;
- the necessary presence of maintenance staff and equipment on the track;
- the necessary presence of passengers on the track during, for example, evacuation from a train or station; and
- interactions between trains and road users at level crossings.

The scope shall *exclude* any other hazardous events, i.e. those that do not fall within the scope of the bullet list above and/or occur outside the boundaries defined in Sub-section 4.2.2.

4.3 Hazard and Risk Analysis (IEC 61508-1 Phase 3)

4.3.1 Aim

The aim of Phase 3 is to determine, and characterise, all the hazards and risks associated with the EUC¹², in the stated Operational Environment, and within the scope already identified in Phase 2.

Note: it is acknowledged that these EUC hazards (and some of the detail that follows, up to and including Sub-section 4.4.2 below), which are not specific to ATC operations, might have already been identified and documented adequately in, say, a safety case for the current (fixed-block) railway operations. For the purposes of this article, however, we will present the analysis as if no such previous work had been done.

4.3.2 EUC Hazard Identification

The objective here is to determine the hazards relating to the EUC, within the scope defined in Sub-section 4.2.

From the IEC 61508 definition of a hazard, which can be paraphrased as "a potential **source** of harm, i.e. death, physical injury or damage to the health of people or damage to property or the environment" (Fowler 2022), it follows that we must first identify the types of harmful **outcome**, i.e. accident, that fall within the signalling area's general area of responsibility and specifically within the above scope of ATC operations.

Table 1 suggests various accident types relevant to railway operations, on the subject railway and, in each case, would involve death or serious injury to one or more of those on board a train or to the workforce or members of the public on, or in the vicinity of, the track.

Table 1 ~ Accident Types Relevant to Railway Operations

ID	Accident Type	Description
A#1	Collision between trains	All collisions between trains except where preceded by derailment of at least one of the trains involved
A#2	Derailment of a train	Unintentional departure of a train from the track
A#3	Collision between train and road users	Train collides with road vehicle, cyclists and/or pedestrians on a level crossing
A#4	Collision between train and non-fixed obstacle(s) on the track	Train collides with non-fixed objects (including debris, members of the public or large animals) on the track
A#5	Collision between train and personnel on the track	Train collides with workforce (including their equipment or vehicles) or disembarked passengers who are on the track

¹² Strictly speaking, IEC 61508 includes "EUC Control System Hazards" here as well. We have taken the view that, for ATC, failures of the EUC Control System are among the *causes* of EUC hazards

-

ID	Accident Type	Description
A#6	Collision between train and fixed structure	Train collides with a fixed structure (including buffer stop), except as a result of either a derailment (A#2) or failure of such structure (A#4)
A#7	Passengers falls on board a train	Passengers injured by falling due to sudden, violent acceleration or deceleration of the train.
A#8	Passenger falls from train on to track	Passenger deaths / serious injuries due to falling from stationary or moving train, on to track
A#9	Passenger slips or trips when getting on or off a train at platform	Passenger deaths / serious injuries due to slips / trips during embarkation / disembarkation at platform, including dragging due to becoming caught in the closing train doors
A#10	Fire on board a train, in a station or trackside Passenger deaths / serious injuries due to exposure and/or smoke inhalation from a fire on a train, in a trackside	
A#11	Fatal or serious electrical injury to passengers or work- force	Passenger or workforce deaths / serious injuries due to exposure to lethal voltages or arcing – resulting injuries include electric shock and burns from contact with live parts, or injury from exposure to arcing

The hazards derived from the above, and in relation to what are seen to be the most credible accident outcome(s), are shown in Table 2 and were adapted from the set of "core" railway hazards derived in doctoral research carried out by Ivan Lucic (Lucic 2015); all of these hazards are *inherent* in railway operations, in the stated Operational Environment, and exist *before* any form of hazard mitigation has been applied.

In the specific case of Hp#1 to Hp#12, the hazards apply directly to the EUC, i.e. the movement of passenger-carrying and engineering trains, and their mitigation places *direct* demands on the safety functionality of the ATC system.

The remaining five hazards, which have a much less direct impact on the required functionality of the ATC system, are not considered to be EUC hazards but will be addressed as part of the analysis of *abnormal* operating conditions, for which the ability of the ATC system to react appropriately will still have to be demonstrated (Sub-section 4.6.5 below).

Table 2 ~ Hazards Inherent in Railway Operations

ID	Hazard	Related Accident(s)
EUC H	azards	
Hp#1	Conflict (1) between any pair of train trajectories (2)	A#1
Hp#2	Conflict (1) between a train's trajectory (2) and track configuration	A#1, A#2, A#3
Hp#3	Train speed exceeding capabilities of the track infrastructure and/or train	A#2, A#6
Hp#4	High and/or uneven acceleration / deceleration of a train	A#7

ID	Hazard	Related Accident(s)
Hp#5	Conflict (1) between train profile and fixed structure, <i>except</i> as the result of excessive train speed (Hp#3) or damage to structure (Hp#10)	A#6
Hp#6	Conflict (1) between a train's trajectory (2) and non-fixed obstacles or unauthorised persons on track	A#4
Hp#7	Conflict (1) between a train's trajectory (2) and workforce / vehicles on track	A#5
Hp#8	Passengers attempt to exit train outside a station	A#8
Hp#9	Passenger embarkation / disembarkation at platform	A#9
Hp#10	Structural failure of track elements, tunnels, bridges etc	A#4
Hp#11	Personnel exposure to potentially lethal voltage	A#11
Hp#12	Passengers too close to, or fall/jump off, platform edge	A#4, A#11
Other I	nherent Hazards	
Hp#13	Passenger evacuation outside platform	A#5, A#11
Hp#14	Train encounters adverse rail-surface conditions	A#1 to A#5
Hp#15	Conflict between a train's trajectory (2) and trackside fire	A#10
Hp#16	Station fire / other emergency on a station	A#10, A#4
Hp#17	Fire, or other emergency, on board a train	A#10

Notes:

- 1. For the specific meanings of "Conflict" in each case, see Appendix A
- 2. Conceptually, a train's "trajectory" is the path and speed profile that the train intends to follow at any point in time, and in the absence of any contrary instructions or information.

IEC 61508 requires that the sequence of events be described for each EUC hazard at this stage in the process, but to do so exhaustively would normally be impracticable for railway operations, because of the sheer number of causal factors involved. What we can usefully do, however, is to describe in general terms the precursor to each hazardous event, and this is included in the more detailed hazard descriptions at Appendix A; we then leave it to the modelling approach described in Sub-section 4.6 below, which does capture how such states are arrived at in the first place, and thus fully satisfy this IEC 61508 requirement.

Of course, what we have not said thus far is anything about the probability that each EUC hazardous event would lead to the related accident except, that the probability would, by definition, be finite. That is addressed next.

4.3.3 EUC Risks

The objective here is to determine the EUC Risks from two perspectives.

Firstly, for each accident type identified in Table 1, the *tolerable* level of EUC Risk must be identified; since the accident types would be unchanged from the previous, fixed-block

operations, it is reasonable to assume, at this stage, that what are *deemed* to be relevant tolerable levels of risk would already have been promulgated.

Secondly, for each hazardous event identified in Table 2, IEC 61508-1 suggests that the *expected* value of unmitigated EUC Risk be estimated at this stage, i.e. *without* taking into account the possible risk reduction afforded by any Safety-related Systems, or any Other Risk-reduction Measures, that would be developed subsequently for that purpose.

However, as discussed in Fowler (2022), there are significant problems in estimating such values of unmitigated EUC risk for complex applications typical of the transport sector; fortunately, as explained in Sub-section 4.4 below, the determination of absolute EUC Risk is not actually necessary in practice, *provided* the associated concept of Necessary Risk Reduction is adhered to in the determination of Overall Safety Requirements.

4.4 Overall Safety Requirements (IEC 61508-1 Phase 4)

4.4.1 Aim

The aim of Phase 4 is to produce a specification of the Overall Safety Requirements for each Overall Safety Function (OSF) in order to achieve the required level of functional safety.

The specification covers both the functional safety requirements (FSRs) and safety integrity requirements (SIRs) for the OSFs although, as we will see in Sub-section 4.4.4 below, IEC 61508's use of the term *safety integrity requirements* at this level is somewhat confusing!

4.4.2 Overall Safety Function Identification

The objective here is to identify a set of OSFs, based on the EUC hazardous events derived from the hazard and risk analysis of Phase 3.

According to IEC 61508, an overall safety function is the highest-level abstraction of the "Means of achieving, or maintaining, a safe state for the EUC, in respect of a <u>specific</u> hazardous event"¹³, whereas, for the Rail sector, the relationships between accidents and hazards (as shown above) is "many-to many", as is the relationship between EUC hazards and the OSFs that are intended to mitigate them.

However, as found in Fowler and Fota (2023) for the Air Traffic Management sector, this is not an insurmountable problem, and the set of OSFs proposed in Table 3 otherwise seems to fit the above definition of an OSF very well.

OSF IDOSF TitleRelated EUC HazardsOSF#1Establish & Protect a Safe Route for each Train
MovementHp#1, Hp#2, Hp#5OSF#2Apply & Maintain Safe Separation between TrainsHp#1

Table 3 ~ Overall Safety Functions

_

¹³ IEC 61508 terminology can be a bit confusing here (Fowler 2022). Hierarchically, an *Overall* Safety Function can be realised as one or more Safety Related Systems and/or one or more Other Risk-reduction Measures, and a Safety Related System can be realised as one or more Safety Functions.

OSF ID	OSF Title	Related EUC Hazards
OSF#3	Enforce Safe Speed Limits for Trains	Hp#3
OSF#4	Provide Safe Passenger Embarkation / Disembarkation	Hp#6. Hp#8, Hp#9, Hp#12
OSF#5	Provide Safe Maintenance Access to Track	Hp#7
OSF#6	Ensure that the Guideway is Safe for Train Passage	Hp#6, Hp#10
OSF#7	Ensure Safe Acceleration & Braking	Hp#4
OSF#8	Ensure Safety of Traction Power Supply	Hp#11

4.4.3 Determine the Functional Safety Requirements for each Overall Safety Function

This step involves the determination of what is required functionally from each of the above OSFs. The resulting Overall Safety Requirements (OSRs) are based on *normal* operational conditions, as described in Section 2, and cover those items that are necessary and sufficient to ensure the safety of ATC operations, in the absence of *failure* and of *abnormal* operating conditions.

The properties shown in Table 4 are what is required of the respective OSFs in order to avoid, and / or mitigate the consequences of, the EUC hazards shown in Table 2.

Table 4 ~ Overall Functional Safety Requirements for Normal Operations

Requirement ID	Requirement Description	Related EUC Hazard
OSF#1	Establish & Protect a Safe Route for each Train Movement	
OSR1.1	A train shall <i>not</i> be authorised to enter a route unless, <i>and until</i> , the route is set and locked in a safe condition (see OSR1.2) and reserved, for <i>that</i> train	
	A route shall be defined by:	
	- the <i>route origin</i> (the location for which authorisation for a train to enter the route shall be given) and the <i>route destination</i> (the location at which the movement authority ceases);	
OSR1.2	- all the route elements between the route origin and route destination, which are to be traversed by the train;	Hp#1, Hp#2
	- route elements of overlap, which are reserved for safety reasons in case of deviations from an authorized train movement;	
	- route elements in the flank-protection area, which prevent or detect unauthorised flank movement;	
	- the authorised direction of travel for the train.	

Requirement ID	Requirement Description	
	A route shall be considered as safe if, and only if,	
	- every requested element of the guideway is locked in the required position such that concurrent use by another train is avoided entirely; <i>and</i>	Hp#1
OSR1.3	- road vehicles (and other road users) are prevented from occupying a level crossing on the route, prior to, and during, train passage; <i>and</i>	Hp#2
	- every requested elements of the guideway that provide flank protection is locked in the required position	Hp#1
OSR1.4	A route element shall <i>not</i> be released and reset for another train until the previous train has cleared that element of the route	Hp#1
OSR1.5	It shall <i>not</i> be possible to route a train through or past a fixed structure whose gauge is incompatible with the kinetic envelope of that train	Hp#5
OSR1.6	The probability of a train overrunning its limit of safe route shall not exceed 10 ⁻⁹ per operating hour	Hp#1, Hp#2
OSR1.7	It shall not be possible to run a train beyond the end of route, or into an area controlled by another signalling system without permission	
OSF#2	Apply & Maintain Safe Separation between Trains	
OSR2.1	A safe distance between following trains (see OSR2.2) shall be maintained at all times	Hp#1
OSR2.2	R2.2 Safe distance shall be based upon the principle of an instantaneous stop of the preceding train and on the ability of the following train to be braked to a halt in time to avoid a collision	
OSR2.3 The <i>safe distance</i> shall be sufficient to ensure that, under <i>normal</i> operating conditions, the probability of a train being unable to stop before colliding with the leading train shall not exceed 10 ⁻⁹ per operating hour		Hp#1
OSF#3	Enforce Safe Speed Limits on Trains	
OSR3.1	A train's actual speed shall not exceed its safe speed (see OSR3.2) at anytime	

Requirement ID	Requirement Description	Related EUC Hazard
	The safe speed shall be the least of:	
	- the speed above which it would not be possible to bring the train to a halt before reaching the limit of its Movement Authority, without the use of emergency braking; and	
OSR3.2	- any permanent and temporary speed restrictions applicable to the track infrastructure within the train's movement authority; and	Hp#3
	- any temporary speed restrictions applied in response to degraded environmental conditions within the train's movement authority; and	
	- any permanent or temporary speed restrictions applicable to the train itself.	
OSR3.3	Permanent speed restrictions shall be determined on the basis of what would be tolerably safe for the train type, state and track-infrastructure geometry	
OSR3.4	Temporary speed restrictions shall be determined on the basis of what would be tolerably safe under the actual conditions of the train, track or environment	
OSR3.5	On approaching an area with a lower speed limit, a train shall have reduced its speed to the new speed limit prior to entry into that area	
OSR3.6	All speed restrictions for the track infrastructure shall be applied to the whole length of the train	
OSR3.7	The probability of a train exceeding its safe speed, by an amount sufficient to cause derailment, or other major accident, shall not exceed 10 ⁻⁹ per operating hour	
OSF#4	OSF#4 Provide Safe Passenger Embarkation / Disembarkation	
OSR4.1	OSR4.1 It shall not be possible for passengers to board or leave a moving train	
Except in an emergency, it shall not be possible for passengers to board or leave a stationary train unless the train is in a station and the door through which they embark / disembark is on the side of, and level with a section of, and adjacent to, the edge of the in-use platform		Нр#8, Нр#9
OSR4.3 Measures shall be taken to prevent embarking and disembarking passengers from becoming trapped in closing train doors or platform doors		Hp#9

Requirement ID		
OSR4.4	Measures shall be taken to prevent embarking and disembarking passengers from falling or becoming trapped between the platform edge and the body of the train	Hp#9
OSR4.5	Minimum dwell times should be maintained so as to allow less mobile or encumbered passengers to leave the train before the doors close	Hp#9
OSR4.6	Measures shall be taken to prevent passengers waiting on a platform being too close to, or falling/jumping from, the platform edge	Hp#12
OSR4.7	Except in an emergency, it shall not be possible for passengers to exit through the ends of a platform	Нр#6
OSF#5	Provide Safe Maintenance Access to Track	
OSR5.1	Trains shall be prevented from accessing areas of the railway that must be reserved for maintenance access (i.e. Work Zones)	Hp#9
OSR5.2	It shall be possible to move engineering vehicles into, and out of, Work Zones, <i>only</i> with the coordination of those at the worksite	
OSR5.3	Maintenance access shall be prevented if trains are running in the proposed Work Zone	Hp#9
OSF#6	Ensure Guideway is Safe for Train Passage	
OSR6.1	Obstacles or unauthorised personnel within the swept envelope of the train's route shall be prevented, or shall be detected in time for emergency braking to be applied in order to avoid a collision	
OSR6.2	In the event of hazardous damage to track elements or other infrastructure, appropriate action, e.g. temporary speed restrictions in, or closure of, the affected area, shall be taken in order to protect train movements	Hp#10
OSF#7	Ensure Safe Acceleration & Braking	
OSR7.1	Except when necessary to respond to a higher-risk situation, sudden / sharp increases or decreases in train acceleration / deceleration (jerking), sufficient to cause injury to passengers, shall be avoided	
OSF#8	Ensure Safety of Traction Power Supply	
OSR8.1	Trains shall be prevented from feeding a traction power supply section that had been isolated (regenerative train braking)	Hp#11
OSR8.2 Where a traction power supply section had been cut off for on-site maintenance purposes, explicit agreement of those at the worksite shall be required prior to restoration of the supply		Hp#11

It should be noted that these requirements are objective-based (or rule-based) in that they express what the OSFs have to *achieve* rather than what they have to do; this means they form a vital link in the *rich traceability*¹⁴ between the lower-level Safety Functions and the EUC Hazards that the functions are required to mitigate.

The need to specify interim, worst-case success criteria¹⁵ for OSFs 1# to #3, in particular, is based on two related factors:

- the fact that they make the greatest, and most direct, contribution to what the UGTMS standard (IEC 2014b) describes as the "safe movement of trains" overall; and
- the reasonable assumption that the processes described in Sub-section 4.4.4 below would lead each of them being assessed as a *SIL 4* function, as defined in IEC 61508.

The key assurance question at this stage is, therefore, whether the above requirements for each OSF would be sufficient to mitigate the corresponding EUC hazard(s) — in other words, are there any conditions (*except* for failures within the OSF or *abnormal* operating conditions) that could lead to the EUC hazard occurring, at an intolerable rate.

Furthermore, the rigour of the assurance required here would depend on the Safety Integrity Level (SIL) for the OSF concerned — see the next Sub-section.

4.4.4 Determine the Safety Integrity Requirements for each Overall Safety Function

According to IEC 61508-1, this step involves the determination of the SIRs required of each of the above OSFs, in order to achieve a tolerable level of risk overall.

IEC 61508-1 states that the SIRs, at this level, must be specified in terms of either:

- the amount of EUC-risk reduction required in order to achieve the tolerable level of risk; or
- the tolerable rate of occurrence of the [EUC] hazardous events, in order to achieve the tolerable level of risk.

There are number of key points to note, as follows.

Firstly, the SIRs at this "overall" level are not, despite their name, properties of the OSF to which they relate¹⁶ — they actually specify a *target* amount of EUC risk reduction that each OSF has to meet¹⁷.

Secondly, it is reasonable to assume that in giving the choice of how to specify the SIRs, IEC 61508-1 intends that the two methods are equivalent, albeit the latter does not require knowledge of what the EUC Risk would have been *before* it was reduced. Therefore, as it is clear that the risk-reduction method depends on the functionality and performance, as well as on the failure rate, of the safety functions, so must the latter method; in other words, though it might be tempting to believe that EUC hazard-occurrence rates could be interpreted directly as OSF failure rates, that would be an entirely false deduction — for further explanation on this point see Fowler (2022).

¹⁴ Traceability that embodies evidence of requirements satisfaction — in this case, evidence that the functional safety properties of Safety Functions are necessary and sufficient to reduce EUC risks to a tolerable level.

¹⁵ For convenience, these are actually expressed a maximum probability of each function being *unsuccessful* in meeting its functional requirements.

¹⁶ Of course, as already seen in Sub-section 4.4.3, this is true also of the *functional* requirements of the OSFs.

¹⁷ Although we will persevere with the IEC 61508 terminology of "safety integrity requirements", such properties might be better thought of as being *safety criteria*, as used in some areas of the transport sector.

Thirdly, notwithstanding the previous point, there is a reasonably straightforward path from knowledge of the most demanding tolerable rate of occurrence of the [EUC] hazardous event, associated with each OSF, to the derivation of a SIL¹⁸ for the OSF (Fowler 2022).

Fourthly, although not a simple mechanical process, methods of deriving tolerable rate of occurrence of the [EUC] hazardous events, from pre-defined *target levels of safety* for the associated accidents, are well documented in rail safety standards such as CENELEC (2017); therefore, since it is not important to the main message of this article to provide a worked example of failure analysis here, we will leave the discussion at this point but pick it up again in the context of lower-level SIRs derivation, in Sub-section 4.6.5 below.

4.5 Overall Safety Requirements Allocation (IEC 61508-1 Phase 5)

4.5.1 Aim

The aim of Phase 5 is to allocate, to Safety Related Systems (SRSs) and/or Other Risk-reduction Methods (ORRMs), the safety requirements, which were derived for the corresponding Overall Safety Functions in Phase 4.

4.5.2 Discussion

IEC 61508 gives prominence to the distinction between SRSs and ORRMs — partly, it would seem because, once identified, the latter measures fall outside the scope of the Standard. Whereas for, say, process industries, the identification of, and distinction between, the two categories of risk-reduction means might be quite straightforward, for the more complex transport applications it is less so.

Table 5 shows a suggested summary allocation of the OSFs from Table 4 on to what might be interpreted generically as SRSs and ORRMs, within the scope of ATC operations. For the purposes of this exercise, the SRSs have been adapted from the top-level functional elements described in the UGTMS standard¹⁹ (IEC 2014b).

Table 5 ~ Allocation of Overall Safety Functions for ATC Operations

OSF ID	OSF Title	SRS(s)	ORRM(s)
	Establish & Protect a Safe Route for each Train Movement	SRS#1 - Set & Protect Route Elements	
OSF#1		SRS#4 - Authorise Train Movement	
		SRS#5 - Supervise Train Movement	
	Apply & Maintain Safe Separation between Trains	SRS#2 - Locate Trains	
OSF#2		SRS#4 - Authorise Train Movement	
		SRS#5 - Supervise Train Movement	

¹⁸ SILs, as defined in IEC 61508-4, are also not properties of an OSF (or of a system, subsystem, element, or component thereof) – see Fowler (2022).

_

¹⁹ In constructing this table, we noted that the titles of the three most critical top-level safety functions in the UGTMS standard are quite misleading — e.g. "Ensure Safe Separation of Trains" (5.1.2) actually covers only the location of trains — and so we avoided using them, preferring instead to reference the Standard's lower-level functions that addressed the full scope of the OSFs concerned.

OSF ID	OSF Title	SRS(s)	ORRM(s)
OSF#3	Enforce Safe Speed Limits for Trains	SRS#3 - Determine Permitted Speed SRS#4 - Authorise Train Movement SRS#5 - Supervise Train Movement	
OSF#4	Provide Safe Passenger Embarkation / Disembarkation	SRS#6 - Supervise Passenger Transfer	Platform Screen Doors / End Doors, Gap Fillers
OSF#5	Provide Safe Maintenance Access to Track	SRS#7 - Protect Staff on Track	Maintenance Safety Procedures
OSF#6	Ensure Guideway is Safe for Train Passage	SRS#8 - Supervise Guideway	Segregated guideway, fences, walls, bridges / subways, etc.
OSF#7	Ensure Safe Acceleration & Braking	SRS#9 - Drive Train	Train's power and braking systems
OSF#8	Ensure Safety of Traction Power Supply	-	Maintenance & Power Supply Safety Procedures Train's power and braking systems

The ORRMs include mainly non-functional, safety-related items for which separate design and development standards would normally exist but which may be related to the corresponding SRSs.

Further details of the SRSs and ORRMs will emerge during the processes described in Sub-sections 4.6 and 4.7 below, respectively.

4.6 Specification of Safety Requirements for SRSs (IEC 61508-1 Phase 9)

4.6.1 Aim

In IEC 61508, the aim of Phase 9 is to develop safety requirements for the SRSs identified in Phase 5, in terms of their FSRs and SIRs, in order to achieve the required functional safety under all *normal*, *abnormal* and *failure* conditions.

4.6.2 Overview

It is important to note here that IEC 61508-1 places great emphasis on the need for a rigorous description of the workings of SRSs at this level, including:

• a description of all the Safety Functions, how they work together to achieve the required functional safety and whether they operate in low-demand, high-demand or continuous modes of operation;

- the required performance attributes of each Safety Function e.g. timing properties and, for more data-intensive applications than possibly envisaged by IEC 61508, data accuracy, latency, refresh rate, and overload tolerance;
- all interfaces that are necessary to achieve the required functional safety;
- all relevant modes of *normal* operation of the EUC;
- all other required modes of behaviour of the SRSs in particular:
 - o their required response in the event of defined *abnormal* operating conditions of the EUC or its environment
 - o their *failure* behaviour and their required response in the event of such failure (Fowler 2022).

To that end, this Sub-section comprises four stages, as follows:

Firstly, the development of FSRs for scenarios covering the entirety of *normal* operations. This will be done (initially at least) at a relatively abstract level, without any reference to physical elements within the end-to-end ATC system²⁰ (see Sub-section 4.6.3 below).

Secondly, to show that the FSRs specified for the SRSs would be adequate to meet the risk-reduction required of the SRSs, in the absence of failure (see Sub-section 4.6.4 below).

Thirdly, to analyse, in a similar manner, scenarios covering *abnormal* events in order to identify any additional FSRs necessary to maintain a tolerable level of safety during such events (see Sub-section 4.6.5 below).

Fourthly, to analyse scenarios relating to potential *failures* of the ATC system in order to identify SIRs, and any additional FSRs, necessary to maintain a tolerable level of safety during such failure events (see Sub-section 4.6.6 below).

Because the first three stages are directly relevant to the "IEC 61508 viewpoint", outlined in Sub-section 1.2, and the fourth is addressed in detail in existing railway standards, most of the focus below is on the former stages.

4.6.3 FSRs for Normal ATC Operations

This first stage involves the identification of a set of Safety Functions for each of the SRSs in Sub-section 4.5, and the derivation of detailed functional safety requirements (FSRs) for each Safety Function that, in conjunction with the properties of the associated ORRMs, would ultimately satisfy the OSF requirements of Table 4.

It is evident, especially in the case of a fully automated railway control system, that the high number of Safety Functions (and an even-higher number of associated detailed FSRs) would be very large. Fortunately, that task is made very much less daunting by the publication, in IEC (2014b), of a comprehensive, generic functional requirements specification for UGTMS, which we can use as a starting point for our urban railway example, as set out initially in Table 6.

Table 6 shows, for each SRS derived in Table 5, a description of the Safety Functions that make up that SRS. It should be noted that these Safety Functions are limited to those that are necessary to address *normal* ATC operations and might not be sufficient for the system to specific how safely ATC must react to *abnormal* operating conditions (Sub-section

²⁰ As noted in Sub-section 3.7.2 of Fowler (2022), the IEC 61508 objective here is to "describe, in terms not specific to the equipment, the required safety properties of the SRS(s)". This level of requirements expression respects that objective since it makes no assumptions about the technology involved in the realisation of the requirements.

4.6.5 below) or to provide mitigation of ATC system internal *failures* (Sub-section 4.6.6 below).

Table 6 ~ ATC Safety Functions per Safety Related System

SRS	SF ID	Safety Functions	Description
	SF#1.1	Reserve, Set & Lock a Route	Establishes (i.e. reserves, sets & locks) a standard route in response to a route call.
Set &	SF#1.2	Supervise Route	Supervises that all conditions for the route are still in place.
Protect Route Elements (SRS#1)	SF#1.3	Maintain Route Locking	Keeps the route locked against route release by manual or system input: • for an approaching train for which the movement authority allows entry into the route, or • for a train that is already within the route.
	SF#1.4	Release Route	Releases the route when all of the conditions for maintaining it locked no longer apply
	SF#2.1	Initialise Reporting Trains Location	Initialises location of reporting trains which are: • stationary in stabling locations, • entering ATC territory, • recovering from localisation failures.
	SF#2.2	Determine Train Orientation	Determines physical orientation of train relative to defined orientation of the track.
Locate Trains (SRS#2)	SF#2.3	Determine Train-travel Direction	Determines the actual travel direction of reporting trains, relative to the track.
	SF#2.4	Determine Reporting Train Location	Determines the location of all reporting trains according to the train orientation and train length.
	SF#2.5	Determine Non-reporting Train Location	Determines if a section of track is occupied by non-reporting trains based on inputs received from devices external to the ATC system.
Determine Permitted Speed (SRS#3)	SF#3.1	Determine Permanent Infrastructure Speed Profile	Determines the permanent speed profiles, based on infrastructure data, e.g. track geometry & quality, and infrastructure constraints (tunnels, bridges, platforms, etc.).
	SF#3.2	Determine Temporary Infrastructure Speed Restrictions	Sets and removes temporary speed restrictions for selected areas by operational commands or as result of system reactions.

SRS	SF ID	Safety Functions	Description
	SF#3.3	Determine Permanent Rolling Stock Speed Restrictions	Determines the maximum permitted speed for each type of rolling stock.
	SF#3.4	Determine Temporary Rolling Stock Speed Restrictions	Determines temporary rolling stock speed restrictions due to train failures and to driving modes.
Authorise Train Movement (SRS#4)	SF#4.1	Determine Limit of Movement Authority	Determines for each train its limit of the movement authority (LMA), corresponding to the first conflict point ahead of the train.
	SF#4.2	Determine Train Protection Profile	Determines the train protection profile for all trains to ensure their LMAs and authorised speeds are never exceeded.
	SF#4.3	Authorise Reporting Train Movement	Authorises train movement for reporting trains in accordance with its Train Protection Profile.
	SF#4.4	Authorise Non- reporting Train Movement	Authorises train movement by wayside signals if conditions of safe route and safe separation are fulfilled.
Supervise Train Movement (SRS#5)	SF#5.1	Determine actual train speed	Determines the actual train speed.
	SF#5.2	Supervise Safe Train Speed	Supervises actual train speed against the permitted speed with respect to the Train Protection Profile.
	SF#5.3	Supervise Safe Train Direction	Supervises movement of a train against the authorised direction of travel.
	SF#5.4	Supervise Movement- Authority Validity	Monitors validity of a train's movement authority and determines action to be taken if validity period is exceeded.
	SF#5.5	Overrun Protection	Supervises the actual position of a train against its LMA.
Supervise Passenger Transfer (SRS#6)	SF#6.1	Control Train & Platform Doors	Contains functions and requirements that are able to authorise and command the opening and closing of train doors, and platform doors, once all conditions which are required to ensure a safe passenger transfer have been met.

SRS	SF ID	Safety Functions	Description
	SF#6.2	Prevent Injury to Person between Train and Platform	Controls external devices and supervises detectors that prevent injuries to persons from falling (or detect persons falling) and becoming trapped between the platform edge and the train body.
	SF#6.3	Authorise Safe Station Departure	Authorises the train to leave the station only when all train doors and all platform doors) are closed and locked.
Protect Staff on Track (SRS#7)	SF#7.1	Protect staff on track by Work Zone	Establishes, and subsequently removes, Work Zones in order to protect staff on the track.
Supervise Guideway (SRS#8)	SF#8.1	Prevent collision with obstacles	Contains functions and requirements that are able to prevent, or detect, collisions with obstacles present in the guideway.
	SF#8.2	Prevent collisions with persons on tracks	Contains functions and requirements that are able to prevent collisions with persons who mainly could enter from platforms to track areas.
Drive Train (SRS#9)	SF#9.1	Determine Operating- speed Profile	Determines the Operating Speed Profile, taking into account ride quality, passenger comfort and the driving mode, (including service acceleration/deceleration rate), within the constraints of the Train Protection Profile.
	SF#9.2	Control Train Movement	Determines, and sends to the rolling stock, traction and braking commands to ensure that the train speed follows the train operating profile and to achieve accurate stopping.

From this point on, we run into a potential problem of developing far too much detail for this article to handle; e.g. for the 30 Safety Functions shown in Table 6, there is a total of around 350 associated Functional Safety Requirements (FSRs)! Therefore, in the illustration at Appendix B, we have shown only the Safety Functions / FSRs that apply to the three SRSs that are needed to support the overall safety function OSF#1, "Establish & Protect a Safe Route for each Train Movement".

4.6.4 Adequacy of the Functional Safety Requirements

Thus far, the SRSs, Safety Functions, and their safety requirements, have been derived purely hierarchically, and what we have yet to show explicitly is, *inter alia*:

- how the functions interact with each other, and with the elements of the wider ATC system and (what we described, in Sub-section 4.1.4 as) the EUC Control System;
- the information needed by, and produced by the SRSs and Safety Functions;
- the system states and sequence of events, during a typical "day-in-the-life" of a train;
- any additional functionality to cope with abnormal and failure events; and
- whether the requirements constitute a complete, correct and coherent set.

There is a wide range of techniques for addressing these issues, and the following are examples of a few of them.

State-transition Models (STMs): a simplified example of which is shown in Figure 4, are used to capture knowledge about system behaviour. They can be translated into other models to support qualitative analysis (e.g. Sequence Diagrams and Activity Diagrams) or quantitative analysis (e.g. Markov models). They represent system behaviour in the form of: the state space of the system in a given context; the events that cause a change of state; the transitions between states; and resulting actions (Lucic 2015).

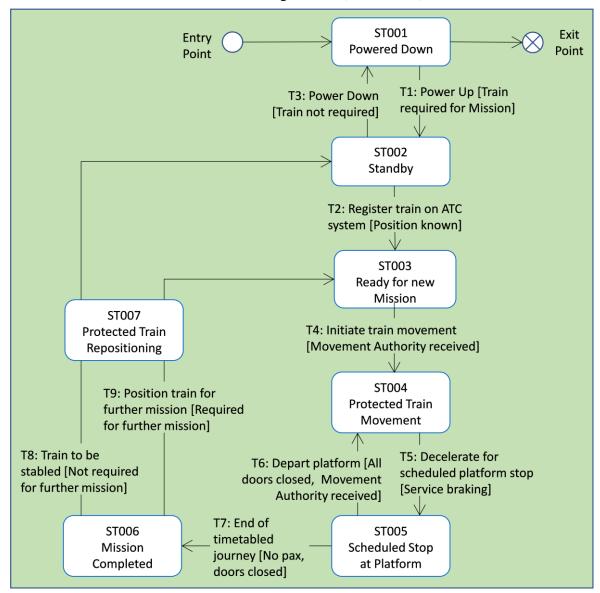


Figure 4 ~ State-transition Diagram for *Normal* Operations

The specific context for Figure 4 is our ATC-enabled railway, seen from the perspective of an ATC-capable train, for the whole of a typical day, i.e. under *normal* operating conditions²¹. The seven states are shown as rounded rectangles, and the nine permitted transitions between the states are represented by the arrows, which are accompanied by

²¹ A more complete model would need to include, for example, states applicable to non-ATC trains, Engineering Hours & Possessions, and *abnormal & failure* conditions.

text signifying the trigger²² for, and (in square brackets) any conditions or constraints²³ applicable to, the transition.

The initial state is the train powered down in a depot (ST001). When a requirement for the train to undertake a mission²⁴ is imminent, the train is brought to a *standby* state (ST002) in which all its systems are running as required but the train is not yet *registered* on the wider ATC system.

When the train's position is known, the train will be registered automatically leading to a state of readiness for undertaking a new mission (ST003).

Once the train has received a Movement Authority, it will move as required by its timetable, under the protection of the ATC system (ST004), until it stops at the first scheduled platform and the appropriate doors are opened (ST005). The train will then repeat states ST004 and ST005 until it reaches its final scheduled stop, all passengers having disembarked and the doors closed (ST006).

Transition T9 then provides for the train to be repositioned (ST007) to undertake further missions until ST006 applies to the final mission of the day. Finally, transition T8 provides for the train to return safely to depot at the end of the day (ST007).

We have chosen to use STMs at this high level in the system hierarchy in order to provide an overarching framework for the next level of analysis, which uses Sequence Diagrams.

Sequence Diagrams: an example of which is shown in Figure 5, is a dynamic form of interaction diagram that shows *objects* (and / or actors) whose *lifelines* run down the page, and with the interactions between them represented as a sequence of messages that are drawn as arrows from the source lifeline to the target lifeline (Sparx Systems 2022).

In this context, we use such diagrams as a method for describing *operational scenarios*, which can be thought of as:

"A set of actions or functions representing the dynamic of exchanges between the functions allowing the system to achieve a mission or a service". (SEBoK 2022).

The Sequence Diagram shown in Figure 5 is for a specific operational scenario in which an ATC-capable train makes a protected journey between two stations, behind a non-ATC train.

At this level of analysis, we have chosen the functional objects to be SRSs (in blue)²⁵ implying that blue lifelines represent Safety Functions. There are also three actors: which represent the two basic trains²⁶ and various wayside devices (including demandable elements and occupancy-detection components). One of the great strengths of this technique is that, in later phases of the lifecycle, the actors and objects of the same scenarios can be redefined, at other levels, e.g. logical design, physical design and software module levels; thus, as SEBoK (2022) also notes:

"Operational scenarios are used to evaluate the requirements and design of the system and to verify and validate the system".

_

²² An event or action.

²³ Also known as "guards".

²⁴ A mission is *planned* journey of the train between two fixed (start and destination) points including any scheduled stops.

²⁵ For completeness, the SRS "Supervise Train Movement" should also have been included but has been omitted for the sake of simplicity of the diagram

²⁶ "Basic" means that train-borne ATC elements are not included, and is consistent with the four ATC *objects* being purely functional

In this scenario, there are:

- two trains: Train 1 is an ATC-capable reporting train and is following Train 2, which is a non-ATC / non-reporting train;
- three contiguous routes, A, B and C, in an interoperability area in which reporting trains and non-reporting trains move, under ATC control (the latter trains being controlled via wayside signals);
- two stations: the first in Route A, and the second in Route B.

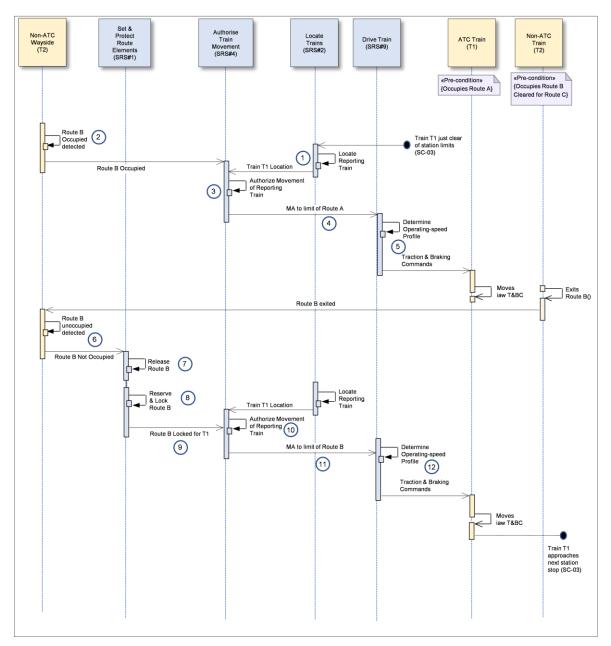


Figure 5 ~ Sequence Diagram for a Protected Movement Between 2 Stations (SC-02)

At the start of the scenario:

• Train 1 is in Route A and leaving the first station (the end of scenario SC-03²⁷, "ATC *Train Makes Scheduled Station Stop*"), and heading for the second station;

_

 $^{^{27}}$ See Appendix C

• Train 2 is in Route B, having departed the second station and has already been cleared for Route C.

Table 7 provides an outline narrative of the subsequent events that are numbered #1 to #12 on the diagram, together with a reference to the related Safety Functions.

Table 7 ~ Scenario SC-02 Narrative of Events

#	Description			
1	Location of Train 1 in Route A is determined and reported (SF# 2.2. to 2.4) to <i>Authorise Train Movement</i>			
2	Non-ATC Wayside detects , and reports, Route B as being occupied (SF# 2.5) by Train 2			
3	Authorise Train Movement maintains the LMA for Train 1 at the safe limit of Route A (SF# 4.1. to 4.2)			
4	Authorise Train Movement sends Movement Authority (SF# 4.3) to Drive Train accordingly			
5	<i>Drive Train</i> determines the <i>Operating- speed Profile</i> (SF# 9.1) for Train 1 and issues traction / braking commands (SF# 9.2), to <i>Train T1</i> , for the train to continue to move in accordance with the <i>Operating- speed Profile</i>			
6	Meanwhile, Train 2 exits Route B; non-ATC Wayside detects this (SF# 2.5) and reports, to <i>Set& Protect Route Elements</i> , that Route B is "not occupied"			
7	Set & Protect Route Elements releases the Route B accordingly (SF# 1.4)			
8	When Route B becomes available, <i>Set& Protect Route Elements</i> sets and locks that route (SF# 1.1 to 1.3) for Train 1.			
9	Set & Protect Route Elements reports, to Authorise Train Movement, that Route B has been set and locked for Train 1			
10	Authorise Train Movement updates the LMA for Train 1 to be at the safe limit of Route B (SF# 4.1. to 4.2)			
11	Authorise Train Movement sends the new MA (SF# 4.3) to Drive Train accordingly			
12	<i>Drive Train</i> determines the <i>Operating-speed Profile</i> (SF# 9.1) for Train 1 and issues traction / braking commands (SF# 9.2), to <i>Train T1</i> , for the train to continue to move in accordance with its <i>Operating-speed Profile</i> until the train approaches the next station stop (beginning of SC-03).			

In effect, the Sequence Diagram for scenario SC-02 details, at a safety-function level, the interactions between the ATC SRSs in respect of state ST005 in Figure 4, as entered via trigger T9 and exited via T8. This demonstrates the role that an STM can play in deriving a complete set of Operational Scenarios for a given context; Table 10, at Appendix C hereto, gives examples of some of the Operational Scenarios that would be needed to underpin the full range of states and transitions shown on Figure 4. That said, a considerable amount of operational and technical expertise and effort would be needed to ensure a complete, correct and coherent set of Operational Scenarios is derived and analysed in practice.

It would be very important at this stage to crosscheck also the diagram and narrative against the detailed FSRs for each Safety Function, to ensure that the completeness and correctness of the relevant set of FSRs in each case.

Since the scenario analysis tells us much more about the required system dynamic behaviour than the purely textural FSRs, each scenario description should also be considered to be an FSR in its own right.

What the Sequence Diagram does not capture is the full complexity of, interactions between, and data used /produced by, each of the Safety Functions that constitute each SRS; for this, we can use Activity Diagrams.

Activity Diagrams: an example of which is shown in Figure 6, are essentially an advanced version of flow charts that model the flow from one activity to another activity.

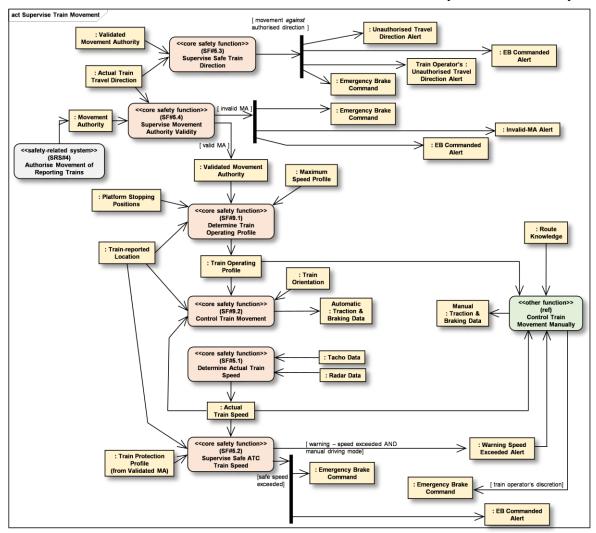


Figure 6 ~ Activity Diagram for Supervise Train Movement

This activity diagram is for the SRS "Supervise Train Movement", which supports each of the first three (and most safety-critical) of the Overall Safety Functions shown in Table 5. The diagram in this case is more structural than sequential, since the overall process is iterative and some of the functions might be running concurrently or asynchronously. The closely related SRS "Authorise Train Movement" is also shown in outline, for reference.

The activities (rounded rectangles) take the form of the Safety Functions involved, with rectangles representing the associated data, i.e. the information produced or used by the Safety Functions, and the instructions that they are required to issue or react to. The arrows indicate the required direction of flow of that data. Two possible modes of operation are covered: i.e. the train being driven automatically, or manually.

Since it would normally be impractical for purely textural FSRs to capture all the information presented in an Activity Diagram, the diagram itself should be identified as a safety requirement in its own right.

Given that we have already identified more than 30 Safety Functions, across nine SRSs, the use of a software design tool would not just help in the diagram's construction, it would also play a crucial part in in preserving the uniqueness of the functions and data, both within the full set of Activity Diagrams (covering, for example, all SRSs) and between those diagrams and the Sequence Diagrams discussed above.

Accepting that the need for some additional FSRs (or even Safety Functions) would probably be identified subsequently, in order to mitigate the effects of specific *normal*, *abnormal* and *internal-failure* events, the functional model of the ATC system, i.e. the aggregate of the Activity Diagrams, once determined, remains sensibly constant; unlike Sequence diagrams, which are very much context dependent.

Other techniques: there are many other techniques that can be used to model the system at this, and lower, levels of representation; a review of some such techniques is presented by Lucic (2015).

4.6.5 ATC Operations under Abnormal Operating Conditions

In general, *abnormal* conditions stem from two main sources:

- hazardous events in the operational environment that are not encountered on a day-to-day basis hazards Hz#13 to 17, in Table 2, are good examples of such events; and
- failure events within the EUC Control System but *outside* the scope of the ATC system itself, e.g. a failure of a train's traction-control system.

In either case, what we are interested in, first of all, are the following:

- what effect the event would have on the continuing functioning of the ATC system and the consequences for the safe operation of the railway; and
- what actions would need to be taken to mitigate the consequences of the event, and how the functionality of the ATC system (existing or additional) could be used to support such actions.

One very useful way of modelling such events is through Operational Scenarios, based on Sequence Diagrams, as described (for *normal* operations) in Sub-section 4.6.4. First of all though, we need the equivalent of the State Transition Diagram of Figure 4, but covering *abnormal* states; this is shown in Figure 7 overleaf.

State ST008 simply provides a link to / from normal operations; the four main abnormal states are then as follows:

- ST009, Degraded Operations: a sub-optimal operational state of the railway where the train/service is able to continue with its mission, or a state where a fault or a combination of faults and external circumstances results in inability to continue under planned operation;
- ST010, Emergency Operations: response of the service/system to a hazardous event, usually external to the EUC Control System and ATC System, which requires immediate action;
- ST011, Recovery: process of returning the system to an operational state, and recovering the service to its planned operational state, following an emergency, or

degraded operation — may include rescue, involving either rescuing a train, rescuing passengers from the train, or both; and

• ST012, Mission Aborted: a mission for a train(s) has been terminated, following unacceptable circumstances.

From this analysis, Table 11, at Appendix C hereto, gives examples of some of the Operational Scenarios that would be needed to cover the full range of *abnormal* conditions.

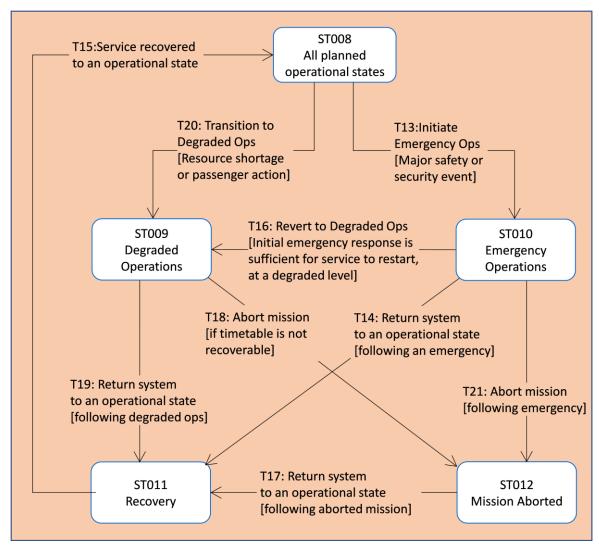
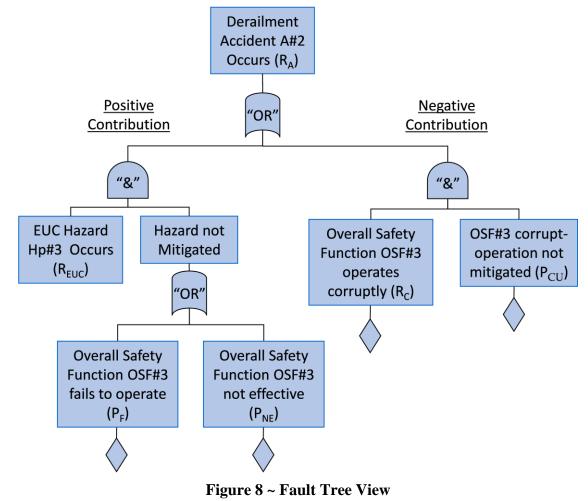


Figure 7 ~ State Transition Diagram for Abnormal Conditions


The final step would be to assess any additional risk that would be presented by the event, based on how effective the mitigating actions would be and how often the event is likely to occur. Therefore, in terms of the main safety requirements that might result from the analysis, the most likely would be for operational procedures and/or new *functional* safety requirements for the ATC system. This is unlike the case of failures *internal* to the ATC system, where a major, *additional* output would be safety *integrity* requirements for the ATC system, as we will see in the next Sub-section.

4.6.6 ATC Operations under Internal-failure Conditions

Finally, for Phase 9, is the specification of Safety Integrity Requirements (SIRs) for the SRSs and their Safety Functions, through analysis of potential failures internal to the ATC system. However, given that such analysis is covered comprehensively in existing rail safety standards, including EN 50126-1 (CENELEC 2017), this Sub-section is limited to addressing key principles relating specifically to the IEC 61508 viewpoint.

It is acknowledged that deriving a true "risk picture" for particular operational applications is far from easy and, in keeping with Sub-section 1.1, the following method is offered simply as a suggested approach to solving that problem.

Figure 1 in Sub-section 1.2 shows, for a single system-safety element, e.g. an OSF, a graphical representation of the relationship between its safety properties and their effect on achievable risk, according to IEC 61508. This graph is now presented in the form of a Fault Tree in Figure 8 below²⁸; in this simplified example, we see how OSF#3, "*Enforce Safe Speed Limits for Trains*", in effect acts as a potential *barrier* to the EUC hazardous event progressing through to an accident — in this case, a derailment²⁹.

²⁸ In mathematical terms, the fault tree applies to a safety function, in what IEC 61508-4 defines as "a low demand mode of operation". However, the authors' intention here is not to detail a quantitative approach — rather, it is to present the general relationships involved.

25

²⁹ In this simple example, we have not explicitly captured the possibility of a near miss, i.e. the likelihood that a collision accident would not result even if a hazard was not mitigated, simply because of the 'geometry' of the situation, for example. It is, however, addressed in the subsequent discussion on the Barrier Model.

As we saw in Sub-section 1.2 above, whether or not OSF#3 mitigates the *consequences* of an EUC hazardous event (Hp#3) would depend on its effectiveness when working (1-P_{NE}), and the probability that it doesn't fail to operate (1-P_F). Although corrupt operation of the OSF could itself lead to a hazardous situation, the rate at which such failures might occur would always be dominated by events outside of the ATC system, i.e. failures in the EUC Control System, or abnormal conditions in the environment.

That said, there might also be means of *reducing* the rate at which an EUC hazard occurs in the first place and to illustrate this we can go to the top-level view of the ATC, described in Section 3, and set them out in the form of a Barrier Model, as in Figure 9.

On the left of the diagram is the input of unmitigated EUC Hazards that are *inherent* in railway operations. Each Barrier, acting in rough sequence from left to right, effectively "filters out" a proportion of the EUC hazards, either by removing them or mitigating their consequences. The safety contribution of ATR is less obvious than that of ATS or ATP, but the argument is that a well-designed and well-run train timetable would (for good business reasons, if nothing else) reduce congestion and, therefore, reduce the number of *opportunities* for a collision accident to occur.

The three main barriers are supported by safety functions or management functions, which are themselves implemented in the physical ATC system, comprising people, equipment and procedures. Of course, these system elements can fail to operate, effectively reducing the probability of success of the barrier, or operate corruptly, giving rise to new, *system-generated* hazards.

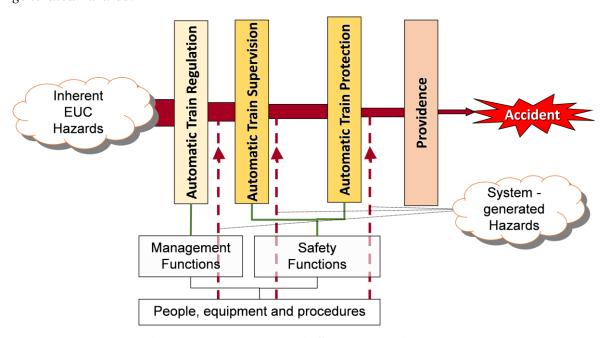


Figure 9 ~ Top-level Rail System Barrier Model

The final, Providence, barrier reflects the point that, even when all three layers of ATC have been unable to remove a hazard, there might still be a significant probability that an actual accident would not result.

In order to quantify the relationships involved, the Barrier Model can be presented in the form of the simplified, top-level Event Tree shown in Figure 10.

At the input to the tree are the unmitigated EUC hazards, which are inherent in railway operations, and which occur at frequency F_U; each barrier then has a probability of

success (P_{Sn}) in mitigating the hazards at its input node (shown thus \otimes), enabling the computation of the risk of an accident (R_A) as:

$$R_A = F_U \cdot (1-P_{S1}) \cdot (1-P_{S2}) \cdot (1-P_{S3}) \cdot (1-P_{S4})$$
(1)

The frequency of other, more-benign outcomes can be similarly computed, with the model capturing the net positive, as well as the negative, contributions of each barrier to the safety of railway operations, in line with the IEC 61508 viewpoint.

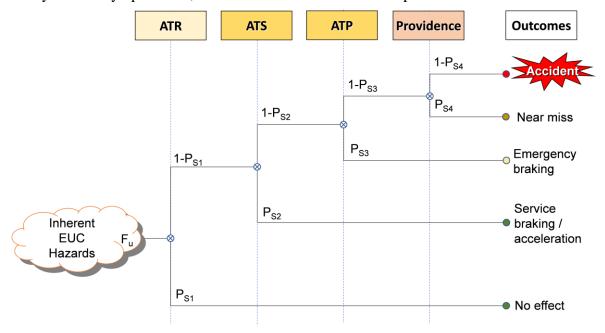


Figure 10 ~ Top-level Rail System Event-tree Model

Of course, the model, as presented here, is purely illustrative and very high-level. Nevertheless it provides a sound framework, for each accident type, and has the advantage of being able to capture multiple *end events* — unlike the Fault Tree, which has only one.

This could be done by developing such an Event Tree for each appropriate accident type of Table 1 and, for each tree:

- decomposing each Barrier into its constituent OSFs, SRSs and Safety Functions;
- constructing Fault Trees (of the form of that shown in Figure 8, but decomposed down to SRS or Safety Function level); and
- ullet linking the Fault Trees to the relevant nodes of the Event Tree such that the top-level event in the Fault Tree represents the probability of a success outcome (P_{Sn}) for the Barrier concerned.

That, of course, raises the more difficult question as to how to get realistic estimates of the probability values for, and a sensible balance between, the Barriers. Fowler and Fota (2023) outlined how this problem had already been addressed and largely resolved, in the Air Traffic Management (ATM) sector, on the European Commission's Single European Sky ATM Research (SESAR) programme, and from which the approach outlined above was derived.

In seeking to overcome many of the shortcomings of more traditional failure-analysis techniques, e.g. hazard-severity / risk-classification schemes, discussed in Fowler (2022), the SESAR approach:

- uses real accident and incident data to populate the model with the historic probability and frequency values;
- more-accurately captures the progression of a hazardous event through to an accident;
- is capable of modelling the interdependencies between barriers, including lower-level common-cause and common-mode failures, which are implied in Figure 9;
- can be adapted so that they properly reflect the operational environment for specific applications;
- is capable of being modified so that the effects, on the historic risk picture, of the introduction of changes at the operational and/or technological level (e.g. the introduction of a new railway control system), could be assessed and, thereby, new risk models produced.

In practice, the SESAR models are used to generate easy-to-use Risk Classification Schemes that more-realistically reflect the overall safety-risk picture of the operational environment concerned.

4.7 Specification of Safety Requirements for ORRMs (IEC 61508-1 Phase 10)

As noted earlier, it has been assumed that all Other Risk Reduction Measures would already exist as part of the legacy railway infrastructure. Therefore, the specification of requirements for these items is not appropriate for such items, in this case.

5 Conclusions

Fundamentally, the IEC 61508-1 lifecycle, as outlined in the first of three articles (Fowler 2022), stems from the simple concept that where there exists an inherently hazardous *Equipment Under Control* (EUC), which presents an intolerable level of risk to its environment, so there is a need to develop and deploy *Safety Related Systems* (SRSs), and/or *Other Risk-reduction Measures* (ORRMs), in order to *reduce* that risk to a tolerable level.

True to its pan-industrial principles, IEC 61508 allows for an EUC to be anything from a nuclear reactor or a chemical process, to road traffic flows, the flow of aircraft through a block of airspace (as in Fowler and Fota (2023)), or the movement of trains around a rail network (as in this article).

Self-evidently, it is the *functional* safety properties of the SRSs / ORRMs that determine their potential to *reduce* the risks, inherent in the EUC, to a tolerable level. Only then does it make sense to consider the safety *integrity* properties of the SRSs / ORRMs, which negatively affect EUC risk in two possible ways:

- loss of function of the SRSs / ORRMs, which would lower the amount by which *inherent* EUC risk could otherwise be reduced;
- corrupt / spurious operation of the SRSs / ORRMs, which would introduce *new* EUC hazards and risks.

This is exactly what the IEC 61508-1 lifecycle does, although the scope of all three articles was limited to the seven IEC 61508 lifecycle phases that relate to the specification of safety requirements, because most of the key principles underpinning IEC 61508 take effect during these earlier phases.

The example application, herein, of the IEC 61508-1 lifecycle to a new, moving-block Automatic Train Control system, for a hypothetical Metro, has:

- provided a comprehensive set of EUC hazards, inherent to rail operations in general;
- presented a systematic way to analyse a system that results in the description of an exemplary set of SRSs³⁰ and a detailed specification of their constituent Safety Functions, which are required in order to provide the necessary *reduction* in the EUC risk; and
- outlined an effective method of modelling the effects of failure of the Safety Functions such that safety integrity requirements for those Safety Functions could be derived.

That said, the challenge of demonstrating correctness and completeness of the safety analysis processes should not be underestimated since, as past experience suggests, we would probably be dealing with "SIL-4" functions in most cases. A complete response to that challenge is beyond the scope of this article but the following two areas of the process presented herein go some way towards meeting it.

The first is the role of the IEC 61508 concept of "Overall Safety Functions" (OSFs), which at first seemed to be somewhat redundant but soon proved to be a vital link between the EUC hazards and the SRRs / ORRMs that are required to mitigate them. It was already realised (Fowler 2022) that the safety integrity requirements at that level are not actually properties of (but are targets to be met by) the OSFs and, by applying the same logic, we realised the need for a functional equivalent, in the form of *rules-based* requirements.

The second is the use of a hierarchical set of models that capture the required behaviour of, and interactions between, the SRSs and their Safety Functions. Not only do these prove to add an essential dynamic dimension to the rather static individual functional specifications, but they also helped identify missing, incorrect and missing requirements.

Overall, it is concluded that following the principles of the specific phases of IEC 61508 provides a considerable overall benefit of ensuring a top-down, and far more complete, approach to functional-safety assessment than might otherwise be the case. Fowler (2015) observed, *inter alia*, that European rail safety standards at *that* time were based almost entirely on a bottom-up analysis of the risks from failure of safety functions and a tacit (and totally unjustified) assumption that a tolerably safe state of a rail control system would exist provided the system were sufficiently reliable. What we believe has yet to be properly demonstrated (i.e. not merely asserted) is that the *current* set of European rail safety standards do not suffer from the same deficiencies!

Acknowledgments

The authors wish to acknowledge the considerable help, support and understanding of many colleagues (past and present) from Transport for London and beyond, without which this article would not have come to fruition. Our particular thanks go to Dr Ivan Lucic for his guidance and allowing us to make use of material from his book "Risk and Safety in Engineering Processes".

The copyright holder of the quotations from published standards used for illustration in the main body of this article is the International Electrotechnical Commission, Geneva; and that of the quotation in Sub-section 1.1 is CENELEC, the European Committee for Electrotechnical Standardization, Brussels.

³⁰ No new ORRMs were identified in this case.

References

- CENELEC. (2017) Railway applications the specification and demonstration of reliability, availability, maintainability and safety (RAMS), Part 1: Basic requirements and generic process, EN 50126-1:2017. European Committee for Electrotechnical Standardization, Brussels.
- Fowler D. (2015). Functional Safety by Design Magic or Logic? In Proceedings of the 23rd Safety-Critical Systems Symposium, Bristol, UK. Available at https://scsc.uk/r129/7:1. Accessed 19th June 2022.
- Fowler D. (2022). *IEC 61508 Viewpoint on System Safety in the Transport Sector: Part 1 An Overview of IEC 61508*, in Safety-Critical Systems eJournal, Vol. 1, Iss. 2. Available at https://scsc.uk/r176.3:1, Accessed 29th December 2022.
- Fowler D. and Fota O.N. (2023). *Safety Assessment of Point Merge Operations in Terminal Airspace* an *IEC 61508 Viewpoint*, in Safety Critical Club eJournal, Vol 1, Iss. 3. Available at https://scsc.uk/r183.3:1#page=25, Accessed 17th July 2023.
- IEC. (2010). Functional Safety of Electrical/electronic/programmable electronic Safety-related Systems, IEC 61508, V 2.0. International Electrotechnical Commission. Geneva.
- IEC. (2014a). Railway applications Urban Guided Transport Management and Command/Control Systems Part 1: System Principles and Fundamental Concepts, IEC 62290-1:2014. International Electrotechnical Commission. Geneva.
- IEC. (2014b). Railway applications Urban guided transport management and command/control systems Part 2: Functional requirements specification, IEC 62290-2:2014. International Electrotechnical Commission. Geneva.
- Lucic I. (2015). *Risk and Safety in Engineering Processes*, Cambridge Scholars Publishing ISBN (13): 978-1-4438-7077-1.
- RailSystem. (2022). *Communications-Based Train Control* (*CBTC*), https://railsystem.net/communications-based-train-control-cbtc/, Accessed 4th July 2023.
- SEBoK. (2022). *Guide to the Systems Engineering Body of Knowledge*, v. 2.7, released 31 October 2022, https://sebokwiki.org/wiki/Operational_Scenario_(glossary). Accessed 4th July 2023.
- Sparx Systems. (2022). *UML 2 Tutorial Sequence Diagram*, https://sparxsystems.com/resources/tutorials/uml2/sequence-diagram.html. Accessed 4th July 2023.

Appendix A. EUC Hazard Descriptions

Table 8 ~ EUC Hazard Descriptions

ID.	Pre-existing Hazard	Description
Hp#1	Conflict between any pair of train trajectories (see note below table)	This hazard is about the separation between trains. As a state of the railway, it exists whenever the intended movement (e.g. planned missions / perturbed running) of any two trains would result in the trains being at the same location at the same time, i.e. a collision would result if nothing at all were done to prevent it.
Hp#2	Conflict between a train's trajectory and track configuration	This hazard is about the relationship between the intended routing of a train and the configuration of the track elements. It exists whenever the intended movement of any train would result in the train passing through an incorrectly-configured set of points or level-crossing lights / barriers — derailment and/or collision could result if nothing at all were done to prevent incorrect route setting.
Hp#3	Train speed exceeding capabilities of the track infrastructure and/or train	This hazard is about the relationship between the speed of a train and the ability of the track elements to support it. It exists whenever the speed of any train exceeds the capability of the track, taking account of the permanent, intrinsic (e.g. curves and junctions) or temporarily-degraded characteristics of the track (e.g. buckled or broken rail) derailment (or collision , in the case of over-speed at the end of track) could result if nothing at all were done to prevent over-speeding of the train.
Hp#4	High and/or uneven acceleration / deceleration of a train	This hazard relates the effect on passengers on trains due to sudden train movement. It exists during lurching, jerking, or sudden rapid deceleration, which could result in passenger falls with the possibility of injury, serious injury or (exceptionally) death.
Hp#5	Conflict between train profile and fixed structure, <i>except</i> as the result of excessive train speed (Hp#3) or damage to structure (Hp#10)	This hazard covers the relationship between the intended route and speed of a train and structure gauge. It exists whenever it would be possible to route a train through, or past, a fixed structure whose gauge is incompatible with the kinetic envelope of that train (as determined by, <i>inter alia</i> , its size / shape and speed), and would result in a collision if nothing at all were done to prevent it. It excludes potential collisions with fixed structures arising from derailment (see other, derailment-related hazards), excessive speed of the train, and collisions arising from failure of fixed structures (see Hp#10)

ID.	Pre-existing Hazard	Description
Hp#6	Conflict between a train's trajectory and non-fixed obstacles or unauthorised persons on track	This hazard concerns the <i>unexpected</i> presence of objects, large animals or unauthorised persons on the running railway such that they could make contact with a passing train. Depending on the physical properties of object concerned, it could lead to: derailment; damage to the leading cab, with the possibility of train-operator injury, serious injury or even death; or serious injury / death to persons on the track.
Hp#7	Conflict between a train's trajectory and workforce personnel / vehicles on track	This hazard concerns the <i>planned</i> presence of workforce personnel or vehicles / equipment on the running railway such that they could make contact with a passing train if nothing at all were done to prevent it.
Нр#8	Passengers attempt to exit a train outside a station	This hazard covers the possibility of passengers falling out of a train due to: - train doors being opened too early on entry to a station; - a train departing with a door or doors open; - train doors being opened outside of a station; or - carriage separation
Hp#9	Passenger embarkation / disembarkation at platform	This covers possible incidents associated with normal entering or alighting from trains at a station. It includes: - train doors being opened on the side away from the platform leading to passengers getting off the train on the wrong side or falling out of the train on to the track; - train doors which are on the same side of the train as the platform, but which are not adjacent to the platform (i.e. the train is longer than the platform, or is not correctly berthed) being opened and passengers falling out of the train; - train doors opening at a closed station except where done deliberately (e.g. to evacuate passengers from platform or train); - a passenger being hit by closing door; - a passenger (or passenger's clothing) being caught in door of a stationary train, which then moves off, dragging the person along the platform; - slips, trips and falls associated with the gap between the train and the platform.

ID.	Pre-existing Hazard	Description
Hp#10	Structural failure of track elements, tunnels, bridges, etc.	This hazard addresses the threat of collision to trains (and its Passengers and on-train Workforce) from failure of structures, including: - unsound track elements; - unsound / unsecured tunnel; - unsound / unsecured under-bridge / culvert; - unsound / unsecured over-bridge. It excludes the direct effects of such failures on members of the public. It also excludes failure of other railway structural assets (e.g. signalling or electrical structures), fallen trees, etc., all of which are covered by Hp#6.
Hp#11	Personnel exposure to potentially lethal voltage	This hazard addresses the threat to people of contact with lethal voltages from electrical power supplies.
Hp#12	Passengers too close to, or fall/jump off, platform edge	This hazard concerns the possibility of passengers at a platform being struck or run over by a train due to passengers: - standing too close to the platform edge or otherwise infringing the kinematic envelope of the train; - falling off (or jumping of) platforms; - crossing the lines at a station (where unauthorised only).

Note: Conceptually, a train's "trajectory" is the path and speed profile that the train *intends* to follow at any point in time, in the absence of any instructions to the contrary.

Appendix B. Functional Safety Requirements - Examples

As an example, the following table lists all FSRs for the Safety Related Systems that have been derived for OSF#1, "Establish & Protect a Safe Route for each Train Movement", in the analysis at Sub-section 4.6, and shows traceability back to the related OSRs set out in Table 4.

The requirements themselves have been adapted from the UGTMS standard (IEC 2014b), and represent a full list for each Safety Function, but under normal operating conditions only.

The traceability shown is to the Overall Safety Requirements (OSRs) related to OSF#1.

Table 9 ~ FSRs for SRSs for OSF#1 Establish & Protect a Safe Route for each Train Movement

ID	Safety Requirement	Traceability
SRS#1	Set & Protect Route Elements	OSF#1
SF#1.1	Reserve, Set & Lock a Standard Route	
FSR1.1.1	For the route to be reserved, ATC shall reserve all the route elements required based on the route origin and route destination, including elements required for flank protection, and for overlap.	OSRs 1.1 & 1.2
FSR1.1.2	The reserved status of a route element shall be provided by ATC to other functions and Service Control Centre.	OSRs 1.1 & 1.2
FSR1.1.3	ATC shall move a reserved movable route element to the desired position if it is not already in that position, not occupied by a train and not blocked against moving.	OSRs 1.1 & 1.2
FSR1.1.4	If a movable route element does not reach the desired position in a predefined time, ATC shall initiate a failure message to this effect.	OSRs 1.1 & 1.2
FSR1.1.5	ATC shall lock all route elements in a route to be set if they are confirmed in the required position.	OSRs 1.1 & 1.2
FSR1.1.6	ATC shall not set a route which would allow a train to enter a route for which it is not suited.	OSR1.4

ID	Safety Requirement	Traceability
SF#1.2	Supervise Route	
FSR1.2.1	ATC shall monitor the status of all route elements to confirm that they are in the required position and locked.	OSRs 1.1 & 1.2
FSR1.2.2	ATC shall provide the status of each route. to other functions and Service Control Centre.	OSRs 1.1 & 1.2
FSR1.2.3	The entrance to a route shall be prohibited by ATC in response to a safety related manual input.	OSRs 1.1 & 1.2
SF#1.3	Maintain Route Locking	
FSR1.3.1	ATC shall determine a train approach area in front of a route origin for which a Movement Authority has been given. The approach area shall cover an area which is longer than the operational braking distance, allowing for any human or system reaction time.	OSRs 1.1 & 1.2
	ATC shall ensure that the status "route locked by approach" prevents the immediate release of the route:	
FSR1.3.2	• if a train is in the approach area and a movement authority has been given to the train, <i>or</i>	OSR 1.3
	• if a train has entered the route (with or without movement authority).	
FSR1.3.3	ATC shall ensure that moveable route elements (e.g. points, etc.) that are occupied by trains are prevented from moving, regardless of whether or not the route is set.	
FSR1.3.4	ATC shall ensure that the route elements in front of a train are maintained locked as soon as the train has entered the set route.	OSR 1.3
FSR1.3.5	ATC shall ensure that moveable route elements that are "blocked against switching "remain in that state until released by manual input related to the need to block the elements in the first place.	OSR 1.3
FSR1.3.6	ATC shall ensure that moveable route elements in a Recovery Route remain locked until the route has been removed.	OSR 1.3
FSR1.3.7	A moveable route element that has been locked by route-setting or manual input shall not be released until all routes / manual inputs that caused the element to be locked in the first place have themselves been released / removed.	
FSR1.3.8	ATC shall not release route elements that are providing flank protection for a route until the route itself is released.	OSR 1.3
SF#1.4	Release Route	
FSR1.4.1	A route may be released only if and when all of the conditions for maintaining it locked no longer apply.	OSR 1.3

ID	Safety Requirement	Traceability
SRS#4	Authorise Train Movement	OSF#1
SF#4.1	Determine Limit of Movement Authority	1
	ATC shall determine for each train the limit of its movement authority (LMA) based on the most restrictive of the following potential conflict points:	
EGD 4 1 1	• Limit of safe route,	OCD 1.5
FSR4.1.1	• Limit based on safe train separation,	OSR1.5
	• Limit based on the physical infrastructure (e.g. end of track),	
	• Zones of protection.	
FSR4.1.2	In the event of a loss of safe route once a movement authority has been issued, ATC shall pull back the LMA to the new limit of safe route.	OSR1.5
SF#4.2	Determine Train Protection Profile	
FSR4.2.1	ATC shall determine a Train Protection Profile for each train, to prevent it from overrunning its LMA, or exceeding the applicable speed limits within its LMA.	OSR1.5
FSR4.2.1	The Train Protection Profile shall be determined by the applicable Safe Braking Model — an analytical representation of a train's performance while decelerating to a complete stop, allowing for a combination of worst-case influencing factors (gradient & adhesion, etc.) and failure scenarios.	OSR1.5
FSR4.2.2	The Safe Braking Model shall ensure that an ATC equipped train will always stop within a distance not greater than that guaranteed by the Model.	OSR1.5
FSR4.2.3	ATC shall calculate the train-protection profile that results from the most restrictive of all safety-related constraints applied to the ATC-equipped train.	OSR1.5
FSR4.2.4	ATC shall enforce speed limits for the whole length of the train.	[n/a]
SF#4.3	Authorise Movement of Reporting Trains	
FSR4.3.1	If a Train Protection Profile with permitted speed greater than zero is established, train movement shall be allowed, up to next LMA.	
FSR4.3.2	Each train movement authorised by ATC shall be within the constraints of the applicable Train Protection Profile.	OSR1.5

ID	Safety Requirement	Traceability
SRS#5	Supervise Train Movement	OSF#1
SF#5.1	Determine actual train speed	
FSR5.1.1	ATC shall detect and determine the actual train speed, taking into account the effects of speed-measurement inaccuracies.	OSR1.5
FSR5.1.2	ATC shall determine the zero-speed status within the predefined tolerances of the speed measurement system.	OSR4.1
SF#5.2	Supervise Safe Train Speed	
FSR5.2.1	ATC shall supervise the actual speed of trains to ensure that each train remains within its Train Protection Profile.	OSR1.5
FSR5.2.2	ATC shall trigger Service braking in accordance with the warning profile in order to respect the Train Protection Profile and to avoid Emergency-brake intervention.	[n/a]
FSR5.2.3	ATC shall automatically release the Service brake during deceleration if actual determined train speed returns below the warning profile.	[n/a]
FSR5.2.4	If the determined actual train speed is higher than the speed permitted by the Train Protection Profile, ATC shall trigger emergency braking.	OSR1.5
FSR5.2.5	ATC shall provide two possibilities for automatic emergency brake release: • if, during deceleration, actual determined train speed returns below the train-protection profile provided there are no other conditions for triggering the emergency brake. • if actual train speed is determined as zero and there is no other triggering condition,	[n/a]
SF#5.3	Supervise Safe Train Direction	
FSR5.3.1	ATC shall detect an unauthorized movement of the train in case of travel of the train against the authorized direction of travel beyond a predefined distance,	[n/a]
FSR5.3.2	When unauthorized movement of the train against the authorized direction rollaway is detected, ATC shall apply the emergency brake,	[n/a]
FSR5.3.3	In the event that a <i>moving</i> train receives a Movement Authority that is contradictory to its direction of travel (i.e. is "behind" the train), the train shall:	

ID	Safety Requirement	Traceability
SF#5.4	Supervise Movement-Authority Validity	
FSR5.4.1	In case a movement authority accepted by the train exceeds its validity period (e.g. due to data communication failure), ATC shall either: • pull back the movement authority limit to the first conflict point ahead of the train, or • stop the train immediately.	OSR1.5
FSR5.4.2	In the event that the train's Movement Authority is cancelled, the train shall emergency brake to a standstill.	[n/a]
SF#5.5	Overrun Protection	
FSR5.5.1	ATC shall supervise the actual position of each ATC-equipped train against its LMA and initiate an emergency braking in the event that the LMA is exceeded.	OSR1.5
FSR5.5.2	ATC shall restrict the movement authority of ATC trains that are in conflict with an unauthorised movement of any train when such an unauthorised movement is detected.	[n/a]

Appendix C. Operational Scenarios — Examples

C.1 Operational Scenarios for *Normal* Operations

Table 10 provides examples of Operational Scenarios for *normal* operations conditions, as discussed in Sub-section 4.6.4.

Table 10 ~ Example Operational Scenarios for *Normal Operations*

SC No	Description	Related Actors	Trigger In:	Trigger out:	Related States
01	Empty ATC passenger train ready to enter service from depot / siding (train berthed outside ATC signalling area	SCC, ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	SCC requests Train power-up	Train registered on ATC system and position ready to exit depot / siding for first Mission of day	ST001, ST002, ST003, ST004
02	AC Train undertaking a System-protected Movement, between station stops (following a non-reporting train)	ATC Train, non-ATC Train, Non- ATC wayside SRS#1, SRS#2, SRS#4, SRS#9	Train leaves previous station limits (SC-03)	ATC Train approaches next station stop (SC-03)	ST005
03	ATC Train makes scheduled station stop.	ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	ATC Train approaches next station stop (SC- 02)	Train clear of station limits (SC-02)	ST006
04	Train repositions to reversing location, for next mission.	ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	Train leaves final station limits (SC-03)	Doors closed. Train ready to depart reversing location (SC- 02)	ST007, ST003
05	Train repositions to depot, after completing final mission of day.	ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	Train leaves final station limits (SC-03)	Train powered down in depot siding	ST007, ST002, ST001

SC No	Description	Related Actors	Trigger In:	Trigger out:	Related States
06	Route setting and junction management in ATC areas	SCC, ATC Train, non- ATC Train, Non-ATC wayside SRS#1, SRS#2, SRS#4, SRS#9	Timetable implementation	Rear of train's Virtual Occupancy clears junction	ST005
07	Train exits depot to join mainline on first mission	ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	Train registered on ATC system and position ready to exit depot / siding for first Mission of day	Train running according to timetable	ST004, ST005

C.2 Operational Scenarios for *Abnormal* Operating Conditions

Table 11 provides examples of Operational Scenarios for *abnormal* operating conditions, as defined in Sub-section 4.6.5.

Table 11 ~ Example Operational Scenarios for Abnormal Operating Conditions

SC No	Description	Related Actors	Trigger In:	Trigger Out:	Related States
016	ATC Train performs recovery of failed train.	SCC, ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	Trains coupled, registered in ATC system and ready to move	Train reaches recovery location	ST011
033	Service Control applies Temporary Speed Restriction.	SCC, ATC Train, non-ATC Train, Non- ATC wayside SRS#1, SRS#2, SRS#4, SRS#9	TSR initiated by SCC	TSR in force – steady state	ST009
079	Detrainment of passengers, train not berthed in platform (taking passengers off train on foot)	SCC, ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	Event necessitating detrainment	Passengers evacuated to safe location	ST010

SC No	Description	Related Actors	Trigger In:	Trigger Out:	Related States
096	Movement of non- communicating ATC trains	SCC, ATC Train, non-ATC Train, Non- ATC wayside SRS#1, SRS#2, SRS#4, SRS#9	Non- communicating ATC train needs to move	Non- communicating ATC train completes move	ST011
100	Service Control initiates unplanned station stop	SCC, ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	SCC needs to stop a train at a non-timetabled station / platform	Train berthed at platform; doors ready to open if required	ST009, ST010
108	Passenger evacuation from train fire	SCC, ATC Train, SRS#1, SRS#2, SRS#4, SRS#9	Fire on train	Passengers rescued	ST010
109	Train / passenger rescue from wayside fire	SCC, ATC Train, non-ATC Train, Non- ATC wayside SRS#1, SRS#2, SRS#4, SRS#9	Fire on wayside	Passengers rescued; train recovered	ST010

Derek Fowler and Alasdair Graebner

This collation page left blank intentionally.