Generic Assurance Topics for
Any Type of Programmable Content

Rob Ashmore and James Sharp

Dstl, Portsdown West, UK

Abstract

An ever-growing range of technologies can be used to implement programmable content.
Examples include highly complex System-On-Chip designs, which use traditional
electronics, as well as approaches based on quantum technologies and biological systems.
Standards and guidance are required to support the safe use of these, and other, emerging
programmable technologies. However, technology-specific guidance is challenging to
produce, especially in a timely manner. To help bridge this gap, we propose a set of
generic assurance topics, which are applicable to all types of programmable content,
introducing considerations based on the assurance of both a program, and the associated
substrate. The topics are initially introduced by considering multi-core processors. Their
application to alternate technologies is illustrated by considering electronic hardware
tailored for machine learning, quantum computing and computation using a bio-based
substrate.

1 Introduction

1.1 Motivation

Safety-critical systems are making ever-increasing use of programmable content. This
progress has been enabled by safety standards and guidance material. For example,
RTCA/DO-178C (RTCA 2011a) addresses software, RTCA/DO-254 (RTCA 2000)
addresses Complex Electronic Hardware (CEH) and both RTCA/DO-200 (RTCA 2015)
and SCSC-127F (SCSC 2021) address data. Collectively, these examples cover three main
aspects of programmability, specifically, software, hardware, and data. Whilst these
examples are widely applicable, there is a growing recognition that technology-specific
details are important. This is apparent, for example, in RTCA/DO-178C's supplements,
e.g. RTCA/DO-331 (RTCA 2011b), which covers model-based development, and
documents related to Multi-Core Processors (MCPs), e.g. CAST-32A (CAST 2016).

Programmable content technologies are developing rapidly. The associated need for
specific, detailed information inevitably challenges the safety community. We could wait
until the technology is well understood and key aspects have been codified as good
practice, but this would mean standards significantly lag behind technology development.
Another way of addressing the challenge would be to publish good practice rapidly,
frequently updating it as new information becomes available. Neither of these approaches

© Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except
where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-
licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email:
psi@nationalarchives.gov.uk.

Published in the Safety-Critical Systems eJournal by the Safety-Critical Systems Club C.1.C. 1

Rob Ashmore and James Sharp

is desirable; standards should not lag technology, nor should they change too often
(Johnson 2016).

Consequently, we frame a generic set of topics that an applicant would be expected to
discuss with a regulator. The details of those discussions would be specific to the
technologies involved in a particular application. Such discussions may be similar to those
associated with Certification Review Items (CRIs), which are used in the aviation domain.
Equivalently, the topics we identify may be an appropriate structure for CRIs related to
programmable content.

Over time, as experience is gained, information may be collected and summarised into a
more-traditional form of codified good practice. Although feasible, we recognise this
approach has limitations. In particular, both the applicant and regulator need a sufficiently
detailed understanding of the relevant technologies: this is not easy to achieve.

1.2 Related Work

The use of a generic set of topics is not a new concept. For example, there are already the
"4+1 Software Safety Assurance Principles” (Hawkins et al. 2013). In addition, the
Federal Aviation Administration (FAA) and the National Aeronautics and Space
Administration (NASA) have described a set of overarching properties (Holloway 2019).

Our work differs from the software safety assurance principles in that it explicitly
considers the substrate on which the software is running. In addition, it differs from the
overarching properties in that it only considers programmable content, rather than a whole
aircraft or an entire system. Consequently, our scope is broader than that of the software
safety assurance principles and narrower than that of the overarching properties.
Crucially, this choice of scope allows us to direct an appropriate amount of attention to
novel types of programmable content.

2 Structure of Our Approach

2.1 Concepts

A program instantiates user-observable behaviour, where a "user" might be, for example, a
human or another system component. Although the implementation may be complicated,
we suggest that a program's intended behaviour is sufficiently constrained to allow it to be
captured in a set of requirements that are meaningful to a user. This is often because a
program has been developed to satisfy the needs of a particular user (or group of users).
For clarity, we note that our concept of a program encapsulates both software and data.

A substrate provides the physical environment in which the program executes. The same
substrate is expected to be able to support many different programs (not necessarily
executing simultaneously). Equivalently, from the view of any individual program, the
substrate is over-specified; a single program will only use a portion of the substrate's
capabilities. In addition, both the physical nature of the substrate and the typically
complex interaction between substrate and program result in substrate-level requirements
being more detailed and more numerous than user-level program requirements.
Consequently, we suggest that, typically, it is not possible for all aspects of a substrate's
behaviour to be captured by requirements.

Generic Assurance Topics for Any Type of Programmable Content

Without a substrate, a program is merely theoretical. Although some claims might be
made about a program's behaviour, e.g. number of steps associated with a worst-case
execution, these inevitably make assumptions about the substrate. Consequently, safety
assurance of a program cannot be completed in isolation. Conversely, without a program,
a substrate delivers no user-observable functionality, so safety assurance of a substrate in
isolation is, at best, incomplete. Hence, safety assurance arguments related to
programmable content are about a program (or a collection of programs) executing on a
given substrate. This observation reflects current practice, e.g. RTCA/DO-178C's
consideration of the target computer (RTCA 2011a).

To simplify presentation, we often refer to a single program, with a single developer. In
almost all cases, there will be multiple programs and multiple developers. For example, in
a traditional implementation, the substrate would be some form of processor, whereas the
Operating System (OS) and applications would be programs.

The preceding discussion may suggest a clear and obvious separation between program
and substrate. As the example of processor microcode illustrates, however, this is not
always the case. Fundamentally, for us, the program contains things that, by design, would
be expected to vary between programs and hence are under developer control. By that
interpretation, microcode would be part of the substrate. Regardless of where the dividing
line is drawn for any specific application of a particular technology, it is important that
nothing is left unconsidered. This is another reason why, as noted earlier, assurance is
about a program executing on a substrate.

2.2 Program Level Assurance

We are concerned with providing assurance that programmable content behaves as
expected by the user, which may be a human or another system component. Our focus is
on showing that the programmable content meets the expectations of the user, rather than
demonstrating that the user's expectations will result in a safe system. Nevertheless,
assurance of programmable content behaviour should be a useful claim, within a wider
assurance argument, that a system is acceptably safe. As noted previously, a program's
intended behaviour is captured in a set of requirements. Consequently, assurance needs to
protect against all the following situations (Figure 1):

1. Where there is a difference in understanding of the requirements between the
user and the program developer: colloquially, "requirements are
misunderstood".

2. Where the program's behaviour is a strict subset of the requirements: "some
expected behaviour is not present”.

3. Where the program's behaviour is a strict superset of the requirements: "some
unexpected behaviour is present”.

Requirements are misunderstood
Program Some expected behaviour is not present

Some unexpected behaviour is present

Figure 1 ~ Program Level Situations to Protect Against

Rob Ashmore and James Sharp

It is helpful to reflect these behaviour-related outcomes in the more familiar context of
traditional software.

In this case, protection against the first situation (requirements are misunderstood) is
achieved by ensuring that requirements have particular characteristics, for example,
accurate, complete, consistent, unambiguous and verifiable. Adopting a Requirements-
Based Testing (RBT) approach, where the program and the tests are independently derived
from the requirements, also helps protect against ambiguity in requirements.

RBT also protects against the second situation (some expected behaviour is not present).
If the program's behaviour is verified against each requirement, then all expected
behaviour should be present. This, of course, assumes that the verification methods are
sound: control of the test environment and accuracy of tests cases are important
considerations here.

Protection against the third situation (some unexpected behaviour is present) typically
involves measuring code coverage using structural metrics, e.g. branch coverage, as part of
an RBT endeavour. This approach is based on an implicit assumption that code structure
(rather than, say, data) is the main way that different behaviours are instantiated. This
approach also assumes that large-scale behaviour, as expressed in user-level requirements,
can be decomposed to low-level behaviour, where coverage is typically measured.
Robustness testing, e.g. checking for arithmetic overflow and exceeded frame times, also
helps protect against some unexpected behaviour being present.

Formal methods (RTCA 2011c) provide an alternative approach to protecting against our
three undesirable outcomes. In this approach, requirements are written in a formal
language, guaranteeing an accurate, unambiguous, consistent (but not necessarily
complete) description of intended behaviour. This description is refined, often through
several stages, to formally demonstrate that the program instantiates the requirements.
There have been several successful applications of formal methods; recent examples
include a compiler (Leroy et al. 2016) and a microkernel (Klein et al. 2009).

Our three behaviour-related outcomes represent a slightly different way of considering
program-level assurance. Although they cover similar themes, e.g. satisfaction of
requirements, our outcomes provide an alternative perspective to the "4+1 Software Safety
Assurance Principles” (Hawkins et al. 2013). Paradoxically, the widespread success of
these principles, which summarise most current approaches to program-level safety, means
they are not well-suited for our purpose. We believe they are, in many people's minds,
wedded tightly to the development of traditional software, including the explicit, traceable,
hierarchical decomposition of requirements. Consequently, they are not ideally suited for
considering new types of programmable content (Ashmore and Lennon 2017). That said,
our separation of program level and substrate level assurance means that the 4+1
Principles could be used for the former, with our topic areas being adopted for the latter.
This might be an attractive approach when the program is largely traditional, with the
novelty being in the substrate level.

In addition to the three behavioural outcomes noted above, there is also a need to consider
protection against malicious intent. Different technologies may provide protection against
certain types of malicious activity: the memory protection offered by the Rust
programming language (Balasubramanian et al. 2017) is one example; the CHERI
(Capability Hardware Enhanced RISC [Reduced Instruction Set Computer] Instructions)
are another (Watson 2019). Most program developments are, however, subject to the same
two vulnerabilities. Firstly, the insider threat, which may be partially protected against by
review activities. Secondly, vulnerabilities inserted via the tool chain, e.g. (Thompson
2007), (Goodin 2017), and (Peisert et al. 2021), which may be partially (but only partially)

Generic Assurance Topics for Any Type of Programmable Content

protected against by obtaining professional-quality tools from reputable supply chains.
Given the common nature of these vulnerabilities, for reasons of brevity, malicious activity
at the program level is not discussed in detail in this paper. Nevertheless, it remains a very
important issue.

2.3 Substrate Level Assurance

We adopt an expectation-based approach for substrate-level assurance. In particular, we
are concerned with demonstrating that the substrate behaves as expected by the program
developer.

As discussed previously, we contend that substrate-level behaviour cannot be meaningfully
encapsulated (for a program developer) in a set of requirements. Inevitably, due to the
breadth and depth that these requirements would have to cover, expectations only ever
capture a subset.

The breadth issue arises because the substrate supports many different types of program.
Consequently, an individual program will only use a fraction of the substrate's capability.
A program developer will focus on those aspects of the substrate that appear relevant to
their specific development. This understandable focusing inevitably produces a partial
picture.

The depth issue arises because the substrate spans from a physical implementation to the
level of abstraction used by the program developer: for traditional processors, the substrate
spans from transistor-level properties of electrons to the Instruction Set Architecture (ISA).
Across this scope, many aspects of physics can affect behaviour. For traditional
electronics, single event upsets are an example that may arise naturally (Taber and
Normand 1993), as are manufacturing and age-related issues (Dixit et al. 2021). There are
also malicious attacks that exploit predictable outcomes of changes in the substrate's
electronic environment, e.g. (Mutlu and Kim 2019) and (Murdock et al. 2020).
Encapsulating a complete set of these effects in requirements seems, to us, an
insurmountable challenge.

Typically, some form of on-target testing addresses common behaviour. Hence, the
question of unexpected behaviour reduces to identification of potential edge cases.
Ideally, these should be identified by a process that is rigorous, repeatable, and auditable.
This is often achieved through the provision of some form of structure: the guidewords
used in a hazard and operability study (HAZOP) are one example (Crawley and Tyler
2015). We propose the structure illustrated in Figure 2.

At the top level, this structure distinguishes between two classes. The first class covers
cases where the program developer expects the substrate to behave in a manner that could
be feasible but is not exhibited at the relevant time: colloquially, we term this a "could be,
but isn't" (CBBI) behaviour. The second class covers cases where the developer expects a
behaviour that "could never be" (CNB) delivered by the substrate. This distinction can be
important because the former class (CBBI) can typically be controlled through
configuration, whereas the latter class (CNB) cannot.

Note that the notion of expectation used here includes cases where the program developer
expects something to happen, as well as cases where the program developer expects
something not to happen. As such, it encapsulates situations where expected behaviour is
absent, as well as situations where unexpected behaviour is present.

Rob Ashmore and James Sharp

Initialisation (Static, Internal)

Interference (Dynamic, Internal)

Expect a behaviour that

Could Be, But Isn't (CBBI) Environment (Dynamic, External)

Integration (Static, External)

Malicious (Static and Dynamic,

Internal and External)
Substrate

Expectation from Experience

Expect a behaviour that - -
Could Never Be (CNB) Expectation from Documentation
Expectation from Development

Figure 2 ~ Substrate Level Situations to Protect Against

Unexpected CBBI behaviours occur due to some influence on the substrate's behaviour.
That influence may be static, i.e. remain fixed for the duration of program execution, or it
may be dynamic. In addition, that influence may be internal to the substrate, or it may be
external. The combination of these properties gives us four ways of identifying
unexpected behaviour. These are illustrated in Table 1, with examples from the context of
an MCP. These examples are provided solely to help illustrate our approach. As noted
previously (in subsection 1.1), there are technology-specific standards for MCP, which are
better suited to that specific technology than our more generic approach. Note that, as
shown in Table 1, the "static, external” combination is addressed by (system) integration.

Table 1 ~ Examples of CBBI Protections in an MCP Context

Static Dynamic

Initialisation: Ensuring the MCP con- |Interference: Mitigating the poten-

Internal figuration settings are as intended. tial effects of shared resource use.

Integration: Introduction of a "safety |Environment: Protecting against
External net" (or "safety monitor™) external to [single event upsets, for example,
the MCP. due to cosmic rays.

In addition to the four combinations shown in Table 1, we explicitly consider a fifth item,
specifically, malicious activity. Examples from the perspective of an MCP are shown in
Table 2. This demonstrates that malicious activity can be associated with all four of the
previously identified combinations, which may suggest that a specific malicious item is
unnecessary. We have considerable sympathy with that view, especially as we strongly
favour greater integration between, historically separate, safety and security activities.
However, on balance, we believe the explicit security-related focus provided by the

6

Generic Assurance Topics for Any Type of Programmable Content

malicious item is beneficial. Note that we explicitly cover malicious activity for the
substrate because it differs significantly between substrates. (At the level of detail
considered in this paper, there is much more commonality in the types of malicious
activity that are associated with the program level.)

Table 2 ~ Examples of Malicious Activity for an MCP

Static Dynamic
Malicious: Hardware-based spyware |Malicious: Hardware-based Trojan
Internal . A . o
that operates continuously. that is triggered by specific conditions.
L . Malicious: Generation of external
External Malicious: Undervolting a processor, electro-magnetic fields to induce

to break secure enclave protection.

faults.

For CNB behaviours, we seek to understand how the program developer may come to
expect impossible (“"could never be™) substrate behaviour. We identify three potential
sources for the mistaken expectation. Working from a more general perspective to a more
specific one, these are:

e Expectations based on previous experience. For example, a developer used to working
with single core processors may assume exclusive use (within a given time period) of
peripherals. This might not be true for an MCP-based implementation.

e Expectations based on substrate documentation. These expectations could be
mistaken, for example, because of errata or the presence of undocumented features
(Domas 2017).

e Expectations based on development processes. Differences between the host, i.e.
development, and target, i.e. operational, systems are a common source of mistaken
expectations.

2.4 Outline Comparisons with Other Standards

We stress that our approach is not meant to replace existing, or emerging, technology-
specific standards (or standards-like documents). Where technology-specific information
is available, this should provide a more detailed description of relevant assurance topics
(and how these may be addressed) than is possible for any generic approach. Technology-
specific standards can describe both requirements and associated acceptable means of
compliance. In contrast, our generic approach can only outline requirements, in the form
of topic areas to be discussed.

As suggested above, our approach is intended to be used when no technology-specific
standards are available. Since they satisfy different aims, a detailed comparison of our
approach with existing technology-specific standards is not appropriate. Nevertheless, a
top-level, outline comparison is considered beneficial, for two reasons. Firstly, it provides
an additional description of our approach and how it may be used. Secondly, it provides
confidence that the identified topic areas are both necessary and sufficient.

Consequently, our approach has been compared with CAST-32A (CAST 2016), which
considers MCP, and the computation-level framework of SCSC-153A (SCSC 2020),
which considers artificial intelligence implemented using machine learning techniques.

Rob Ashmore and James Sharp

Details of these outline comparisons are in Appendix A (Table 6 and Table 7,
respectively).

The mapping to CAST-32A illustrates that all but one of CAST-32A's objectives can be
mapped to our generic topic areas. The exception is that CAST-32A explicitly asks for an
accomplishment summary, whereas communication mechanisms are not explicitly detailed
in our approach. This mapping also shows that each of our areas maps to at least one
CAST-32A objective.

The mapping to the SCSC-153A computation level shows that all of SCSC-153A's
objectives can be mapped to our generic topic areas. It also shows that each topic area
maps to at least one objective. It is noteworthy that our substrate topic areas, of which
there are eight, correspond to only two of the nineteen SCSC-153A objectives. This
reflects the greater prominence given to the substrate in our work, and is deemed
appropriate, since this is an area of significant technological development.

The simple nature of these mappings means it would be inappropriate to read too much
into their results. Nevertheless, they provide some confidence that the topic areas
identified in our work are both necessary and sufficient for discussing assurance-related
issues associated with new programmable content technologies. Further confidence is
provided by the examples discussed in the following section.

3 Example Application

3.1 Example Programmable Content Technologies

To illustrate our topic areas, we apply them to three program/substrate combinations:

e An algorithm developed using Machine Learning (ML), running on a large-scale,
complex System-On-Chip (SOC);

e An algorithm running on a quantum computer; and

e An algorithm running on a bio-based substrate.

The first example represents a technology that is available commercially now. The second
and third technologies represent items that are being actively researched and where the
associated substrates have very different properties to silicon-based electronics. We
suggest that this range of examples (together with the previous MCP-related commentary)
illustrates the generic nature of our approach. We note, however, that many other types of
substrate could have been considered, e.g. neuromorphic processors (Davies et al. 2018),
and memory-based compute (Bearden et al. 2020). The large number of potential
examples is a key motivation for this paper.

The three examples are considered in the following subsections. Each subsection begins
with a brief overview of the program and substrate. This is followed by a discussion of
some of the key assurance points. Note that these discussions are not intended to be
complete. Their purpose is not to act as a ready-made argument that can be deployed for
any use of the associated substrate. Instead, the discussions are intended to demonstrate
the way our generic assurance topics highlight key assurance aspects.

Generic Assurance Topics for Any Type of Programmable Content

3.2 An Algorithm Developed using ML, Running on a SOC

Overview: This example uses Commercial Off-The-Shelf (COTS) hardware in the
context of an autonomous vehicle. More specifically, the substrate is an NVIDIA Jetson
AGX Xavier SOC (NVIDIA Corporation 2021). This includes: a 512-core Graphical
Processing Unit (GPU); an 8-core Central Processing Unit (CPU); two Deep Learning
Accelerator (DLA) engines; a Very Long Instruction Word (VLIW) vision processor;
Double Data Rate (DDR) 4 memory; and embedded Multi-Media Card (eMMC) storage.

We consider a program implemented as a Deep Neural Network (DNN), which performs
object recognition on camera images. This program was developed using a combination of
tools, including: the Jetson AGX Xavier Developer Kit; TensorRT; cuDNN; and
TensorFlow. Training data was obtained from a fleet of camera-equipped vehicles. The
program also includes the Board Support Package (BSP) and the OS, which in this case is
Linux for Tegra (L4T).

Our considerations for this example draw heavily on (Ashmore and Sharp 2020),
(Ashmore et al. 2021) and (SCSC 2020).

Program Level: For the purposes of this paper, it is assumed that the BSP and OS are
largely traditional, so they are not considered further. In practice the BSP and OS are
often an important part of the overall COTS package. As such, their influence on the
behaviour of the substrate may require a thorough analysis.

ML is typically used to solve open problems, which do not have a complete set of
accurate, consistent, and verifiable requirements. Indeed, if such a set of requirements is
available then traditional software development techniques may be preferred (Salay and
Czarnecki 2018).

When ML is used, protection against requirements are misunderstood may be achieved,
at least in part, by:

e Ensuring training data is relevant to the object recognition task: for example, a training
data set comprising German language road signs would not be relevant for an algorithm
deployed on UK roads.

e Ensuring model behaviour is interpretable, including behaviour on a single input (local
interpretability) and behaviour on classes of input (global interpretability).

e Ensuring independent verification activities provide suitable coverage of the inputs
likely to be received during operational use.

Protection against some expected behaviour is not present may be achieved, at least in
part, by:

e Ensuring measures of model performance adequately capture required behaviour. For
example, some misclassifications may be more important than others: misclassifying a
pedestrian as a road marking is likely to be worse than mistaking a 50 mph speed limit
sign for a 30 mph limit. Consequently, a model that had similar misclassification rates,
regardless of the classes involved, would not be demonstrating the expected behaviour.

e Ensuring test environments are sufficiently representative of the real world. This can be
challenging, especially for open problems, where it is difficult to know which parts of
reality need to be sufficiently represented.

Protection against some unexpected behaviour is present may be achieved, at least in
part, by:

Rob Ashmore and James Sharp

e Ensuring training data is suitably complete. For example, covering a sufficiently wide
collection of classes, and sub-classes (Paterson and Calinescu 2019), of object types,
observed in a sufficiently wide range of meteorological and illumination conditions.

e Ensuring testing on the target hardware covers, either exhaustively or via appropriate
sampling, the training, test, and verification sets. Also, ensuring that this testing covers
robustness issues, e.g. arithmetic overflow, numerical accuracy.

e Ensuring independent verification activities provide suitable coverage of inputs that may
be received following failures elsewhere in the system, e.g. camera issues.

Substrate Level: The substrate is a COTS item. This means the programmable content
developer is likely to, at best, have limited influence over its design features. It also means
that the developer is likely to have only limited information about the SOC's
implementation-level features. (A similar situation prevails for many modern processors,
including MCPs, where detailed implementation-level feature information is unlikely to be
available.)

From an initialisation (CBBI - static, internal) perspective, documenting and justifying
the desired SOC configuration is important. This includes, but is not limited to, control of
debug features and microcode updates.

From an interference (CBBI - dynamic, internal) perspective, runtime monitoring of the
SOC's configuration is important (especially for software-configurable items). The
potential effects of other software running alongside the program under test may also be
important.

From an environment (CBBI - dynamic, external) perspective there may be a need to
protect against the effect of active sensors on the autonomous vehicle, or other vehicles.
For example, the combined effect of multiple, active sensors in a cluttered urban
environment may need to be considered.

From an integration (CBBI - static, external) perspective, (system) integration activities
providing for multiple processing channels, running on separate substrates, is an important
consideration. For example, the object recognition channel (the subject of the current
discussion) may be combined with a much simpler object detection channel. When
multiple channels are used, the degree of independence needs to be carefully considered.

From a malicious perspective, the COTS nature of the substrate makes it extremely
difficult to protect against the introduction of a hardware-based Trojan. Thinking about
the standard cyber security triad of Confidentiality, Integrity and Availability (CIA),
availability should be detectable and manageable by traditional safety measures, similar to
a hardware failure of the SOC. Multiple processing channels should be used to detect loss
of integrity. Confidentiality is very difficult to protect at the substrate-level. System-level
architectural designs, which, from a confidentiality perspective, treat the SOC as an
"untrusted box" may be an appropriate way of mitigating this risk.

From an experience (CNB) perspective, a developer may be unfamiliar with the
combination of features available on the SOC. In particular, the combination of CPU,
GPU and DLA may mean that the developer's program is executed on an unexpected part
of the substrate. This risk may be exacerbated if different SOC workloads result in
different execution patterns.

From a documentation (CNB) perspective, the possibility of undocumented features and
document errata should be considered. The latter may be protected against by careful
monitoring of information provided by the substrate manufacturer. Where specific
features of the substrate are of particular importance, a "trust but verify" approach may be
appropriate.

10

Generic Assurance Topics for Any Type of Programmable Content

From a development (CNB) perspective, the SOC chosen for this example may be
sufficiently powerful to support both development and operational use, thus removing
host-target differences. Alternatively, these differences may be important, if development
is conducted on a GPU, but operational inference is conducted on a DLA. One way of
mitigating this concern would be to conduct all post-training evaluation on the intended
target hardware.

3.3 An Algorithm Running on a Quantum Computer

Overview: We begin by noting that, if it is successfully commercialised (Dyakonov
2019), quantum computing is most likely to be applied as a co-processing technology, i.e.
alongside traditional computers.

To illustrate the utility of quantum computing, it is helpful to consider different categories
of problem (or application). For presentational reasons, we are deliberately imprecise: a
more precise description is provided in (Gheorghiu et al. 2019). As shown in Table 3, we
identify three separate classes, depending on whether a problem can easily be solved, and
whether a solution can easily be checked, using traditional computers.

Table 3 ~ Computation Classes Relevant to Quantum Computation

Using Traditional Computers ... Class 1 Class 2 Class 3
... Easily Solved? Yes No No
... Easily Checked? Yes Yes No

For problems in Class 1, there is no need to invoke the additional complexity of a quantum
computer. For problems in Class 2, provided the implications of a failed check can be
handled safely, a significant amount of the assurance burden may be borne by using
traditional computing to check a solution and, as such, assurance of the quantum portion
may be less of a concern. Hence, problems in Class 1 and Class 2 are excluded from the
current discussion.

To the best of our knowledge, the existence of Class 3 problems has not been proven.
However, there are problems that credibly can be claimed as being in this class. One
example requires calculation of a path that traverses a network (or graph) of a particular
form (Childs et al. 2003).

A key aspect of a quantum computer is the notion of a "quantum bit", or qubit. Unlike a
traditional bit, which holds a single value (either 0 or 1), a qubit holds a superposition of
both 0 and 1; equivalently, a qubit holds a probability distribution over the space {0, 1}.
Entanglement can be used to link qubits, so that the superposition of n qubits describes a
probability distribution over a space containing 2n items. When a measurement is taken,
the superposition collapses to a single item. The likelihood of receiving a particular
measurement matches the associated probability encoded in the superposition.

Over recent years, there has been significant progress on quantum computing. For
example, there is an open-source system, which includes a compiler, simulator and
emulator (Steiger et al. 2018). This system includes a backend that links to cloud-based
access to quantum computers, provided by IBM (IBM 2021). Other ways of interacting
with these quantum computers are also available (IBM n.d.).

11

Rob Ashmore and James Sharp

A simplified, but indicative, quantum computer system stack, based on (Fu et al. 2016), is
illustrated in Table 4. This distinguishes program-level considerations and substrate-level
considerations.

Table 4 ~ Simplified Quantum Computer System Stack

Stack Program / Substrate

Quantum Algorithm

Programming Paradigm / Language Program

Compiler

Quantum Instruction Set Architecture

Quantum Execution / Error Correction Substrate

Quantum Chip

Given our current level of understanding, this example focuses on issues to be discussed,
rather than on potential solutions to these issues.

Program Level: Our chosen example involves calculating a traversal path for graphs of a
certain form. When considering requirements are misunderstood, it could be whether
the program should calculate any path, or whether the shortest path should be calculated.
As highlighted previously, quantum computing is inherently stochastic. = Hence,
requirements relating to the probability of obtaining the desired result (including whether
results from sequential runs are statistically independent) may be misunderstood.

In terms of some expected behaviour is not present, test results may be influenced by
inappropriate control of the test environment. This may be a particular concern if multiple
tests are executed sequentially.

The program being considered is relatively simple in intent and, as such, offers little
opportunity for cases where some unexpected behaviour is present. One possible
example is different classes of network may be much easier to analyse. In some
circumstances, significant changes in compute timing, for different classes of input, may
be additional and unwanted behaviour.

Substrate Level: Quantum computation is an immature domain. Consequently, a specific
example substrate is not discussed. Instead, we consider the quantum substrate in more
general terms than that of the ML SOC.

From the perspective of initialisation (CBBI - static, internal), we are concerned with the
way that initial qubit values are established, as well as the way that qubit entanglements
are created.

In terms of interference (CBBI - dynamic, internal), decoherence and noise are
significant challenges to the physical implementation of a quantum computer. These
effects make it difficult to maintain specific values in, and entanglement between, qubits.
Quantum Error Correction (QEC) methods are used to help mitigate these effects, at the
expense of using a larger number of qubits.

12

Generic Assurance Topics for Any Type of Programmable Content

With regards to environment (CBBI - dynamic, external), current quantum computers
require tight control of the environment, in particular to reduce the amount of
environmental noise.

From the perspective of integration (CBBI - static, external), the way that information is
passed from a traditional computing resource to the quantum computer is of interest.
Additionally, the number of times a quantum algorithm is repeated is another factor.
Further, most QEC approaches rely on integration between a control mechanism
implemented on a traditional computer and a quantum computer.

Malicious intervention into quantum cryptographic protocols is well-studied (Padmavathi
et al. 2016). The potential vulnerabilities of quantum computers appear to be less well
investigated. One obvious topic is an effective denial of service attack, caused by
increasing the noise in the environment.

Quantum computer programs are based on a very different paradigm to traditional
programs. For example, all steps in a quantum program need to be reversible, qubits
cannot be copied, and no loops are permitted. (If necessary, loops can be achieved by
repeated interaction between traditional and quantum computers, with the former handling
the loop construct.) There are also cases where it is appropriate to use an undefined qubit
in a calculation. These differences mean a developer may have unrealistic expectations
based on previous experience (CNB).

Inaccurate documentation (CNB) may create unrealistic expectations. One significant
area involves understanding gate-level reliability, which depends on the QEC scheme
employed, as well as the quantum computer's tolerance to external noise.

Unrealistic expectations may arise as part of development (CNB) due to inaccuracies in
simulators and emulators used to debug quantum algorithms. Some of these, especially
those relating to the final, pre-measurement superposition distribution, may be difficult to
identify.

3.4 An Algorithm Running on a Bio-Based Substrate

Overview: This example considers molecular-based techniques, which exploit Chemical
Reaction Networks (CRNs), implemented via Domain Strand Displacement (DSD) (Badelt
etal. 2017). A brief introduction to CRNs is available in (Ashmore 2020).

A chemical reaction, in which reactants produce products at a given rate, is expressed in
the general form:

Rate
Reactants — Products (Equation 1)

Both reactants and products are more generally referred to as species. A CRN is a
collection of related reactions.

In order to practically implement a CRN, fuel species are typically needed, e.g. to catalyse
reactions, and waste species are often produced. Hence, a more complete description is:

Rate
Reactants + Fuel — Products + Waste (Equation 2)

A number of implementations of CRNs have been demonstrated, including neural
networks and solutions to the 3-SAT satisfiability problem (Winfree 2019).

For the purposes of our current discussion, we consider Equation 1 to be at the program
level and Equation 2 to be at the substrate level; that level also includes, for example, the
physical vessel in which the reactions occur.

13

Rob Ashmore and James Sharp

Within this section, we assume the CRN is implemented in a bulk, well-mixed system
rather than, for example, using a surface-based implementation (which, from our
perspective, would be a different type of substrate). Where we need a specific example,
we consider a combined CRN watchdog-oscillator system, where the watchdog can reset a
failed oscillator (Ellis et al. 2019). However, much of the following focuses on generic
CRN-related issues, rather than specific details of this example. This discussion is based
on (Ellis et al. 2019), (Lutz et al. 2012) and (Johnson et al. 2019).

Program Level: In terms of requirements are misunderstood, CRNs are inherently
stochastic, which needs to be appropriately reflected in the requirements. Requirements
may also include implicit (and, consequently, misunderstood) assumptions regarding the
fate, or future utility, of intermediate products. CRN behaviour is memoryless, stochastic,
and asynchronous, so CRNs can be represented as Continuous Time Markov Chains
(CTMCs). They are thus amenable to model checking, using tools like PRISM
(Kwiatkowska et al. 2011), which can help detect ambiguous requirements.

Model checking can also provide a way of protecting against some expected behaviour is
not present. CRNs also consume physical resources. In the case of our specific example,
this may limit the number of times a broken oscillator may be restarted. Conversely, a
user might expect unlimited restarts.

In CRNs, the concentration of a species, i.e. the amount present in the bulk mixture, can be
viewed as analogous to a real-valued variable. More strictly, since concentrations cannot
be negative, two species are needed to represent a real-valued variable: one for positive
values and one for negative values. Including a set of reactions to cover negative values,
when a variable can only take positive values, would be an example of some unexpected
behaviour is present at the program level. Another example of unexpected behaviour
could be including reactions to "tidy up" intermediary species, when not specified to do so
in the requirements.

Substrate Level: In terms of initialisation (CBBI - static, internal), key issues include
the provision of sufficient quantities of reactant and fuel species. In addition, vessels used
to contain the CRN implementation should be demonstrably free from contamination.

Concerning interference (CBBI - dynamic, internal), in a bulk mixture all possible
reactions occur simultaneously. This can make it challenging to schedule discrete steps
within a program. Steps may be approximated with very different reaction rates (earlier
steps having faster rates). Additionally, the products of a first step may be the reactants of
a second step: this will ensure some of the first step completes before the second step
begins; it will not ensure that the first step fully completes before the second step begins.
Another approach involves using separate physical containers for each step: this obviously
complicates the physical implementation (and integration). Another interference issue is
unintended reactions, especially reactions that involve waste species.

From the perspective of the environment (CBBI - dynamic, external), chemical reaction
rates are sensitive to environmental conditions, like temperature and pressure. If these are
not as intended, then the actual reaction rates may be very different to those anticipated.
Additionally, the change in reaction rate may not be uniform across all reactions in a CRN,
making sequencing of program steps even more challenging.

In terms of integration (CBBI - static, external), a bio-based approach needs a
mechanism for communicating the results of the computation. This is often achieved via
molecules with different levels of luminescence. Using this type of approach to "read" the
result of the computation is part of integration. For ongoing, continuous programs, e.g.
monitors, integration may also involve ensuring there is a sufficient flow of fuel and
reactants; removal of waste may also be a factor.

14

Generic Assurance Topics for Any Type of Programmable Content

To the best of our knowledge, there has been little work on malicious interference with
CRNs. Consequently, we merely highlight two theoretical possibilities. Firstly, we note
that additional species could be inserted so that the program's behaviour changes after a
certain number of oscillations (or, perhaps, a certain number of oscillator resets).
Secondly, we note that the concentration of waste species could provide an adversary with
valuable information, potentially undermining confidentiality.

From an experience (CNB) perspective, most programmers used to traditional electronics
may be challenged by the notion that all possible reactions can occur simultaneously. The
significant time taken for processing to complete (typically measured in hours) may be
another relevant factor.

With regards to documentation (CNB), the mapping from an abstract CRN, e.g. Equation
1, to an implementation CRN, e.g. Equation 2, means that, in essence, each substrate is
program-specific. In traditional terms, the substrate is more like an Application-Specific
Integrated Circuit (ASIC) than a general-purpose CPU. Hence, documentation relates to
the way the relevant species are created and their resulting properties, e.g. amount of
species fragments, or other unintended items.

In terms of development (CNB), there are two main ways of analysing bulk mixtures.
CTMCs account for stochastic behaviour and are amenable to model checking. Ordinary
Differential Equations (ODES) represent expected, average behaviour. This combination
of methods may help protect against incorrect expectations. In addition, bisimulation
approaches can provide confidence that an implementation CRN accurately reflects the
intent of an abstract CRN (Johnson et al. 2019).

4 Summary

Table 5, overleaf, provides a very brief summary of the main points raised in the preceding
examples. Depending on the nature of the example, these points may be mechanisms for
providing assurance evidence, or issues that should be addressed by assurance evidence.
For completeness, this table also includes a line on malicious activity at the program level.

The table demonstrates the potential applicability of our generic assurance topics to a wide
range of programmable content. Whilst this is encouraging, more work is needed before
these topics, broken down into program and application substrate, can become a formal
recommendation. Completion of a number of specific worked examples, with sufficient
detail to provide compelling assurance arguments, are an important part of that work.

Finally, motivated by the creation of specialised SOCs for ML tasks, and the broadening of
computation away from traditional transistor-based architectures, we have highlighted the
need for a set of generic assurance topics. These should enable a consistent approach to
assuring elements within the ever-broadening domain of programmable content.

15

Rob Ashmore and James Sharp

Table 5 ~ Summary of Generic Assurance Topics and Chosen Examples

Developed Using
ML, Running on a
SOC

Algorithm Run-
ning on a Quan-
tum Computer

Algorithm Run-
ning on a Bio-
Based Substrate

Program

Requirements are
misunderstood

Relevant training
data; interpretable
behaviour; inde-
pendent verification

Requirements relat-
ing to probability of
correct result; inde-
pendence of se-
quential runs

Reflect stochastic
nature; intermediate
products; probabil-
istic model check-

ing

Some expected
behaviour is not
present

Adequate measures
of model perfor-
mance; sufficiently
representative test
environment

Control of the test
environment, e.g.
sequential tests

Probabilistic model
checking; consump-
tion of physical re-

sources

Some unnecessary
behaviour is pre-
sent

Sufficient testing
(including robust-
ness); independent
verification

Significant, input-
dependent changes
in timing

Inclusion of species
for negative values;
tidy up of interme-
diate species

Malicious activity

Insider threat; tool-
based vulnerabilities

Insider threat; tool-
based vulnerabili-
ties

Insider threat; tool-
based vulnerabili-
ties

16

Generic Assurance Topics for Any Type of Programmable Content

Developed Using
ML, Running on a
SOC

Algorithm Run-
ning on a Quan-
tum Computer

Algorithm Run-
ning on a Bio-
Based Substrate

Initialisation
(CBBI - static, in-
ternal)

Document and justi-
fy SOC configura-
tion

Initial qubit values
and entanglements

Sufficient quantities
of species; vessels
free from contami-
nation

Interference
(CBBI - dynamic,
internal)

Runtime monitor-
ing; effects of co-
hosted software

Decoherence; noise;
QEC

Sequencing steps;
unintended reac-
tions

Environment
(CBBI - dynamic,
external)

Active sensors on
own, and other ve-
hicles

Noise

Effects on reaction
rates

Integration (CBBI
- static, external)

Multiple processing
channels

Passing information
from traditional to
quantum; number of

Reading the results;
input flow of spe-
cies; removal of

[<5]
© re-runs waste
@
Q
> Hardware-based : .
» Trojans; multiple | Denial of service by :inosr?arjlgnegreiqilon-
Malicious activity |processing channels; |increasing envi- centratig)n of \’/vaste
untrusted "closed ronment noise species
box" architecture P
Experience (CNB) Combination of Reversible; no qubit g;rr?:.ltlzrrl%ogﬁor_eac-
processing features |copying; no loops cessing time
Documentation E?gg?(;gﬁﬁgﬂ:g?: Gate-level reliabil- |Way species are
(CNB) rata: ’trust but verify ity; QEC scheme |created
Host-target differ- | Inaccuracies in
Development e . CTMCs; ODEs;
(CNB) ences; train on tar- |simulators and emu- bisimulation
get lators
Disclaimers

This document is an overview of UK MOD sponsored research and is released for
informational purposes only. The contents of this document should not be interpreted as
representing the views of the UK MOD, nor should it be assumed that they reflect any
current or future UK MOD policy. The information contained in this document cannot
supersede any statutory or contractual requirements or liabilities and is offered without

prejudice or commitment.

17

Rob Ashmore and James Sharp

Acknowledgments

The authors gratefully acknowledge the comments provided by the anonymous reviewers.
These led to a significantly improved paper.

References

Ashmore, R. (2020). Urban Maths - Best of Both Worlds. Mathematics Today, June 2020.
Retrieved from: https://ima.org.uk/14267/urban-maths-the-best-of-both-worlds/.
Accessed 14" December 2021.

Ashmore, R., & Lennon, E. (2017). Progress Towards the Assurance of Non-traditional
Software. In Parsons, M., & Kelly, T. (Eds.) Developments in System Safety Engineering,
Proceedings of the 25" Safety-critical Systems Symposium, February 2017.
Independently Published.

Ashmore, R., & Sharp, J. (2020). Assurance Argument Elements for Off-the-shelf,
Complex Computational Hardware. In Casimiro, A., Ortmeier, F., Bitsch, F., & Ferreira,
P. (Eds.). Computer Safety, Reliability, and Security: 39th International Conference,
SAFECOMP 2020, Lisbon, Portugal, September 16-18, 2020, Proceedings (pp. 260-
269). Springer.

Ashmore, R., Calinescu, R., & Paterson, C. (2021). Assuring the Machine Learning
lifecycle: Desiderata, methods, and challenges. ACM Computing Surveys (CSUR), 54(5),
1-39. https://doi.org/10.1145/3453444

Badelt, S., Shin, S. W., Johnson, R. F., Dong, Q., Thachuk, C., & Winfree, E. (2017). A
General-Purpose CRN-to-DSD Compiler with Formal Verification, Optimization, and
Simulation Capabilities. In Brijder, R., & Qian, L. (Eds). DNA Computing and Molecular
Programming: 23rd International Conference, DNA 23, Austin, TX, USA, September 24—
28, 2017 (pp. 232-248). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-
66799-7_15

Balasubramanian, A., Baranowski, M.S., Burtsev, A., Panda, A., Rakamari¢, Z., &
Ryzhyk, L. (2017). System Programming in Rust: Beyond Safety. In Proceedings of the
16th Workshop on Hot Topics in Operating Systems, May 2017 (pp. 156-161).
https://doi.org/10.1145/3102980.3103006

Bearden, S.R., Pei, Y.R.,, & Di Ventra, M. (2020) Efficient solution of Boolean
satisfiability problems with digital memcomputing. Scientific Reports, 10(1), 1-8.
Retrieved from: https://www.nature.com/articles/s41598-020-76666-2 Accessed 20th
January 2022.

CAST, the Certification Authorities Software Team (2016). Multi-core Processors.
Position Paper CAST-32A, November 2016

Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., & Spielman, D. A. (2003).
Exponential algorithmic speedup by a quantum walk. In Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, June 2003 (pp. 59-68)
https://doi.org/10.1145/780542.780552

Crawley, F., & Tyler, B. (2015). HAZOP: Guide to best practice. Elsevier, 3™ edition (21
April 2015)

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S.H., Dimou, G., Joshi,
P., Imam, N., Jain, S., & Liao, Y. (2018). Loihi: A Neuromorphic Manycore Processor
with On-Chip Learning. IEEE Micro, 38(1), January 2018, 82-99
https://doi.org/10.1109/MM.2018.112130359

18

https://ima.org.uk/14267/urban-maths-the-best-of-both-worlds/
https://doi.org/10.1145/3453444
https://doi.org/10.1007/978-3-319-66799-7_15
https://doi.org/10.1007/978-3-319-66799-7_15
https://doi.org/10.1145/3102980.3103006
https://www.nature.com/articles/s41598-020-76666-2
https://doi.org/10.1145/780542.780552
https://doi.org/10.1109/MM.2018.112130359

Generic Assurance Topics for Any Type of Programmable Content

Dixit, H.D., Pendharkar, S., Beadon, M., Mason, C., Chakravarthy, T., Muthiah, B., &
Sankar, S. (2021) Silent Data Corruptions at Scale. arXiv. Retrieved from:
https://arxiv.org/pdf/2102.11245v1.pdf Accessed 20" January 2022.

Domas, C. (2017). Breaking the x86 ISA. Black Hat, USA. Retrieved from:
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-
Instruction-Set-wp.pdf Accessed 20" January 2022.

Dyakonov, M. (2019). When will useful quantum computers be constructed? Not in the
foreseeable future, this physicist argues. Here's why: The case against: Quantum
computing. IEEE Spectrum, 56(3), March 2019, (pp 24-29)
https://doi.org/10.1109/MSPEC.2019.8651931

Ellis, S.J., Klinge, T.H., Lathrop, J.I., Lutz, J.H., Lutz, R.R., Miner, A.S., & Potter H.D.
(2019). Runtime Fault Detection in Programmed Molecular Systems. ACM Transactions
on Software Engineering and Methodology (TOSEM), 28(2) April 2019, Article No.: 6,
(pp 1-20) https://doi.org/10.1145/3295740

Fu, X., Riesebos, L., Lao, L., Almudever, C.G., Sebastiano, F., Versluis, R., Charbon, E.,
Bertels, K. (2016). A heterogeneous quantum computer architecture. In Proceedings of
the ACM International Conference on Computing Frontiers, May 2016, (pp 323-330)
https://doi.org/10.1145/2903150.2906827

Gheorghiu, A., Kapourniotis, T., Kashefi, E. (2019). Verification of quantum computation:
An overview of existing approaches. Theory of Computing Systems, 63(4), May 2019
(pp.715-808) https://doi.org/10.1007/s00224-018-9872-3

Goodin, D. (2017). Apple scrambles after 40 malicious “XcodeGhost” apps haunt App
Store. Ars Technica. Retrieved from: https://arstechnica.com/information-
technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-
store/ Accessed 20t January2022.

Hawkins, R., Habli, I., & Kelly, T. (2013). The principles of software safety assurance. In
31% International System Safety Conference, 2013. Retrieved from: https://www-
users.cs.york.ac.uk/rhawkins/papers/HawkinsISSC13.pdf Accessed 20™ January 2022.

Holloway, C. M. (2019). Understanding the overarching properties. NASA Technical
Memorandum NASA/TM-2019-220292. Retrieved from:
https://ntrs.nasa.gov/api/citations/20190029284/downloads/NASA-TM-2019-
220292Replacement.pdf Accessed 20" January 2022.

IBM. (2021) IBM Quantum Experience. Retrieved from:
http://research.ibm.com/quantum/, Accessed 14 December 2021.

IBM. (n.d.) Qiskit: Open-Source Quantum Development. Retrieved from:
https://qgiskit.org/. Accessed 14" December 2021.

Johnson, C. (2016). Role of Regulators in Safeguarding the Interface between
Autonomous Systems and the General Public. In Hewett, J. (Ed.). Proceedings of the 34"
International System Safety Conference, Orlando, USA 8-12 August 2016 Retrieved
from: http://www.dcs.gla.ac.uk/~johnson/papers/ISSC16/requlator.pdf Accessed 20%
January 2022.

Johnson, R., Dong, Q., & Winfree, E. (2019). Verifying chemical reaction network
implementations: a bisimulation approach. Theoretical Computer Science, 765, (pp.3-
46). Retrieved from: https://authors.library.caltech.edu/96464/1/1-s2.0-
S0304397518300136-main.pdf Accessed 20" January 2022.

19

https://arxiv.org/pdf/2102.11245v1.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf
https://doi.org/10.1109/MSPEC.2019.8651931
https://doi.org/10.1145/3295740
https://doi.org/10.1145/2903150.2906827
https://doi.org/10.1007/s00224-018-9872-3
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://www-users.cs.york.ac.uk/rhawkins/papers/HawkinsISSC13.pdf
https://www-users.cs.york.ac.uk/rhawkins/papers/HawkinsISSC13.pdf
https://ntrs.nasa.gov/api/citations/20190029284/downloads/NASA-TM-2019-220292Replacement.pdf
https://ntrs.nasa.gov/api/citations/20190029284/downloads/NASA-TM-2019-220292Replacement.pdf
http://research.ibm.com/quantum/
https://qiskit.org/
http://www.dcs.gla.ac.uk/~johnson/papers/ISSC16/regulator.pdf
https://authors.library.caltech.edu/96464/1/1-s2.0-S0304397518300136-main.pdf
https://authors.library.caltech.edu/96464/1/1-s2.0-S0304397518300136-main.pdf

Rob Ashmore and James Sharp

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., & Sewell, T. (2009). seL4: Formal verification
of an OS kernel. In Proceedings of the ACM SIGOPS 22" Symposium on Operating
Systems Principles, October 2009, (pp. 207-220)
https://doi.org/10.1145/1629575.1629596

Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM 4.0: Verification of
probabilistic real-time systems. In Gopalakrishnan, G., & Qadeer, S. Computer Aided
Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings. (pp. 585-591). Springer. Berlin, Heidelberg, Germany.

Leroy, X., Blazy, S., Kastner, D., Schommer, B., Pister, M., & Ferdinand, C. (2016).
CompCert-a formally verified optimizing compiler. In Proceeding of the 8" European
Congress on Embedded Real Time Software and Systems, ERTS 2016, Toulouse, France
Retrieved from: https://www.researchgate.net/publication/293814383_CompCert_-

A_Formally Verified Optimizing_Compiler Accessed 201" January 2022.

Lutz, R. R., Lutz, J. H., Lathrop, J. I., Klinge, T. H., Mathur, D., Stull, D. M., Bergquist, T.
G., & Henderson, E. R. (2012). Requirements analysis for a product family of DNA
nanodevices. In 2012 20th IEEE International Requirements Engineering Conference
(RE) (pp. 211-220). https://doi.ieeecomputersociety.org/10.1109/RE.2012.6345806

Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., & Piessens, F. (2020).
Plundervolt: Software-based fault injection attacks against Intel SGX. In 2020 IEEE
Symposium on Security and Privacy (SP) (pp. 1466-1482).
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00057

Mutlu, O., & Kim, J. S. (2019). RowHammer: A retrospective. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(8), August 2020. 1555-
1571 https://doi.org/10.1109/TCAD.2019.2915318

NVIDIA Corporation. (2021). Jetson AGX Xavier Developer Kit. Retrieved from:
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit. Accessed 14
December 2021.

Padmavathi, V., Vardhan, B. V., & Krishna, A. V. N. (2016). Quantum cryptography and
quantum key distribution protocols: a survey. In 2016 IEEE 6th International Conference
on Advanced Computing (IACC) (pp. 556-562). https://doi.org/10.1109/IACC.2016.109

Paterson, C., & Calinescu, R. (2019). Detection and mitigation of rare subclasses in
neural network classifiers. arXiv preprint arXiv:1911.12780, 2019. Retrieved from:
https://www.researchgate.net/profile/Colin-Paterson-
4/publication/337671290 Detection and Mitigation of Rare Subclasses in Neural Ne
twork Classifiers/links/5df770984585159aa4809742/Detection-and-Mitigation-of-Rare-
Subclasses-in-Neural-Network-Classifiers.pdf Accessed 20" January 2022.

Peisert, S., Schneier, B., Okhravi, H., Massacci, F., Benzel, T., Landwehr, C., Mannan, M.,
Mirkovic, J., Prakash, A., & Michael, J. B. (2021). Perspectives on the SolarWinds
Incident. IEEE Security & Privacy, 19(02), (pp. 7-13). Retrieved from:
https://www.computer.org/csdl/magazine/sp/2021/02/09382367/1saZVPHhZew
Accessed 20" January 2022.

RTCA. (2000). Design Assurance Guidance for Electronic Hardware. RTCA/DO-254,
RTCA, Inc. Also available as EUROCAE Document ED-80.

RTCA. (2011a). Software Considerations in Airborne Systems and Equipment
Certification. RTCA/DO-178C, RTCA, Inc. Also available as EUROCAE Document
ED-12C.

20

https://doi.org/10.1145/1629575.1629596
https://www.researchgate.net/publication/293814383_CompCert_-_A_Formally_Verified_Optimizing_Compiler
https://www.researchgate.net/publication/293814383_CompCert_-_A_Formally_Verified_Optimizing_Compiler
https://doi.ieeecomputersociety.org/10.1109/RE.2012.6345806
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/TCAD.2019.2915318
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://doi.org/10.1109/IACC.2016.109
https://www.researchgate.net/profile/Colin-Paterson-4/publication/337671290_Detection_and_Mitigation_of_Rare_Subclasses_in_Neural_Network_Classifiers/links/5df770984585159aa4809742/Detection-and-Mitigation-of-Rare-Subclasses-in-Neural-Network-Classifiers.pdf
https://www.researchgate.net/profile/Colin-Paterson-4/publication/337671290_Detection_and_Mitigation_of_Rare_Subclasses_in_Neural_Network_Classifiers/links/5df770984585159aa4809742/Detection-and-Mitigation-of-Rare-Subclasses-in-Neural-Network-Classifiers.pdf
https://www.researchgate.net/profile/Colin-Paterson-4/publication/337671290_Detection_and_Mitigation_of_Rare_Subclasses_in_Neural_Network_Classifiers/links/5df770984585159aa4809742/Detection-and-Mitigation-of-Rare-Subclasses-in-Neural-Network-Classifiers.pdf
https://www.researchgate.net/profile/Colin-Paterson-4/publication/337671290_Detection_and_Mitigation_of_Rare_Subclasses_in_Neural_Network_Classifiers/links/5df770984585159aa4809742/Detection-and-Mitigation-of-Rare-Subclasses-in-Neural-Network-Classifiers.pdf
https://www.computer.org/csdl/magazine/sp/2021/02/09382367/1saZVPHhZew

Generic Assurance Topics for Any Type of Programmable Content

RTCA. (2011b). Model-Based Development Supplement. RTCA/DO-331, RTCA, Inc.
Also available as EUROCAE Document ED-218.

RTCA. (2011c). Formal Methods Supplement to DO-178C and DO-278A. RTCA/DO-333,
RTCA, Inc. Also available as EUROCAE Document ED-216.

RTCA. (2015). Standards for Processing Aeronautical Data. RTCA/DO-200, RTCA, Inc.
Also available as EUROCAE Document ED-76.

Salay, R., & Czarnecki, K. (2018). Using machine learning safely in automotive software:
An assessment and adaption of software process requirements in 1SO 26262. arXiv
preprint arXiv:1808.01614, 2018 Retrieved from:
https://arxiv.org/ftp/arxiv/papers/1808/1808.01614.pdf Accessed 20™ January 2022.

SCSC, Safety Critical Systems Club C.I.C. (2020). Safety assurance objectives for
autonomous systems, SCSC-153A. Retrieved from: https://scsc.uk/r153A:1 Accessed 20%
January 2022.

SCSC, Safety Critical Systems Club C.1.C. (2021). Data Safety Guidance. SCSC-127F.
Retrieved from: https://scsc.uk/r127F:1 Accessed 201" January 2022.

Steiger, D. S., Héner, T., & Troyer, M. (2018). ProjectQ: an open source software
framework for quantum computing. Quantum, 2, p.49 https://doi.org/10.22331/q-2018-
01-31-49

Taber, A., & Normand, E. (1993). Single event upset in avionics. IEEE Transactions on
Nuclear Science, vol. 40, no. 2, pp. 120-126, April 1993,
https://doi.org/10.1109/23.212327

Thompson, K. (2007). Reflections on trusting trust. In ACM Turing Award Lectures (p.
1983), January 2007. Association for Computing Machinery. New York, USA
https://doi.org/10.1145/1283920.1283940

Watson, R. N. M., Moore, S. W., Sewell, P., & Neumann, P. G. (2019). An introduction to
CHERI. University of Cambridge, Computer Laboratory, Technical Report Number 941,
UCAM-CL-TR-941, ISSN 1476-2986

Winfree, E. (2019). Chemical reaction networks and stochastic local search. In
International Conference on DNA Computing and Molecular Programming (pp. 1-20).
Springer. Cham Switzerland.

21

https://arxiv.org/ftp/arxiv/papers/1808/1808.01614.pdf
https://scsc.uk/r153A:1
https://scsc.uk/r127F:1
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1109/23.212327
https://doi.org/10.1145/1283920.1283940

Rob Ashmore and James Sharp

Appendix A. Outline Comparison Mappings

Table 6, below, provides an outline mapping between the objectives listed in CAST-32A
and the generic topic areas identified in this paper. Table 7 provides a similar mapping
between the objectives in the computation-level framework of SCSC-153A and the topic
areas of this paper.

Table 6 ~ Outline Mapping from CAST-32A Objectives to Generic Topic Areas

Program Substrate
5 = =l =% 5
; c| ¢ o es S =
CAST-32A e |88 88|28/ 2E|s5| = |5y|5E| 58
S © - 2 S| S T| OB Sl =< =3 Q = IS
Objective nol x| 82 S|5E|SX|BE| &2 | 85| 82|82
c3logloce|ss5|E€=|8UW| 58 8|82 CE|BL
2o 8| ds|S2|l 8| 2g|le2X 5188/ 83| 8¢
Es| XT| 3| E= EE|SEIEY = | XX| XS X3| =
=2 $8 3-; TS|l T8l gl g £ |WwhjlwAjwA S
35 2 T ME| 0S| M| Mg o |0 m m
2|58 33882888882 §|82|82|86¢8| ©
MCP_Planning_1 X X X X X 5
MCP_Resource_
Usage 1 X X 2
MCP_Resource_
Usage 2 X X X 3
MCP_Planning_2 X X X X 4
MCP_Resource_
Usage 3 X X 2
MCP_Resource_
Usage 4 X X 2
MCP_Software_1 X X X X 4
MCP_Software_2 X X X X X X 6
MCP_Error_
Handling_1 X X 2
MCP_Accomplishment_ 0
Summary_1
Count| 2 2 2 3 8 1 4 2 1 4 1 -

22

Generic Assurance Topics for Any Type of Programmable Content

Table 7 ~ Outline Mapping from SCSC-153A Computation-Level Objectives to
Generic Topic Areas

Program Substrate
gl = =l =5 5
1 c [t — =T —
o 9 @ Lwc| § & = c
SCSC-153A Computa- gb =5 g 8|3 =|cc| 5|55 g |Su|E8E|s¢g
tion-Level Objective gol2g| e 2| 5E|SK|BE|l S |Eg|8E2|l =g
s2l 8| S8 sg|lEt—| = >&| 28 |g=| g ElB2
Pl e 35|22 88| 28|85 2128/ 23|28
SO XZ| 3| E=|EE|SEIEY| s | XX| XO| XB| w
2|85 282/ ZE|28|=g| 2 |wd|wo|dal §
35 2 T ME| 0S| 0S| ME| o |0 m m
ool ES| ESE 5] 3 = < e = e o
o 2 M= m m Mz m|[Z2s5|2s5| 23| O
cE|RE|AFEO0Ll02|02|02 O |O&E|CE|CE
COM 1-1: Data is ac-
quired and controlled X 1
appropriately.
COM1-2: Pre-
processing methods do X X 2
not introduce errors.
COM1-3: Data captures
the required algorithm X 1
behaviour.
COM1-4: Adverse ef-
fects arising from distri- X 1
bution shift are protect-
ed against.

COM2-1: Functional
requirements imposed

on the algorithm are X X X 3
defined and satisfied.

COM2-2: Non-
functional requirements
imposed on the algo- X X X 3
rithm are defined and
satisfied.

COM2-3: Algorithm
performance is meas- X 1
ured objectively.

COM2-4: Performance
boundaries are estab- X 1
lished and complied
with.

COM2-5: The algorithm
is verified with an ap-

propriate level of cover- X X 2
age.

COM2-6: The test envi-
ronment is appropriate.

COM2-7: Each algo-
rithm variant is tested X X 2
appropriately.

23

Rob Ashmore and James Sharp

Program Substrate
1= c
L € e = "’% o =
o D I<5) D o| 5 = = =
SCSC-153A Computa- | § | 2 5| 8 8 -%;; ec|l 25|65 o |Sy|&8ls¢
tion-Level Objective 23leg| 88| 28| 5E|SX|Bs| 2|85 Be|8¢a
cgolecg|lgelTale—| s 58 =} o-| o E|l oL
[N 7 X'l =2 ©s51'S ;5| @©% F— O o| D S| O o
co|l gl o5l =2 28 =i 153 ool 20| 2>
EE $8 23|28 Z2&|l=g|Zg| Z |(WuwWo|Waol <
a3 = Sl 0S| 0S| 0|l O | 0s(0e|@0g
Sa|l ES| EC < > > [Q
2|5 S [rales el o0 n2l @ | 258|258 28] O
rE|RE| A8 O0L|02|02|0L2 O |C&E|CE|CE
COM3-1: An appropri-
ate algorithm type is X X 2

used.

COM3-2: Typical errors
are identified and pro- X
tected against.

COMB3-3: The algo-
rithm’s behaviour is X X X
explainable.

COM3-4: Post-incident
analysis is supported.

COM4-1: The software
is developed and main-

tained using appropriate X X X
standards.

COM4-2: Software mis-
behaviour does not re- X
sult in incorrect outputs
from the algorithm.

COMB5-1: Appropriate
computational hardware X X X X X
standards are employed.

COMb5-2: Hardware
misbehaviour does not

result in incorrect out- X X X
puts from the algorithm.

Count| 5 13 12 1 2 2 1 2

24

