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Abstract 

An ever-growing range of technologies can be used to implement programmable content.  
Examples include highly complex System-On-Chip designs, which use traditional 
electronics, as well as approaches based on quantum technologies and biological systems.  
Standards and guidance are required to support the safe use of these, and other, emerging 
programmable technologies.  However, technology-specific guidance is challenging to 
produce, especially in a timely manner.  To help bridge this gap, we propose a set of 
generic assurance topics, which are applicable to all types of programmable content, 
introducing considerations based on the assurance of both a program, and the associated 
substrate.  The topics are initially introduced by considering multi-core processors.  Their 
application to alternate technologies is illustrated by considering electronic hardware 
tailored for machine learning, quantum computing and computation using a bio-based 
substrate. 

1 Introduction 

1.1 Motivation 

Safety-critical systems are making ever-increasing use of programmable content.  This 
progress has been enabled by safety standards and guidance material.  For example, 
RTCA/DO-178C (RTCA 2011a) addresses software, RTCA/DO-254 (RTCA 2000) 
addresses Complex Electronic Hardware (CEH) and both RTCA/DO-200 (RTCA 2015) 
and SCSC-127F (SCSC 2021) address data.  Collectively, these examples cover three main 
aspects of programmability, specifically, software, hardware, and data.  Whilst these 
examples are widely applicable, there is a growing recognition that technology-specific 
details are important.  This is apparent, for example, in RTCA/DO-178C's supplements, 
e.g. RTCA/DO-331 (RTCA 2011b), which covers model-based development, and 
documents related to Multi-Core Processors (MCPs), e.g. CAST-32A (CAST 2016). 

Programmable content technologies are developing rapidly.  The associated need for 
specific, detailed information inevitably challenges the safety community.  We could wait 
until the technology is well understood and key aspects have been codified as good 
practice, but this would mean standards significantly lag behind technology development.  
Another way of addressing the challenge would be to publish good practice rapidly, 
frequently updating it as new information becomes available.  Neither of these approaches 
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is desirable; standards should not lag technology, nor should they change too often 
(Johnson 2016). 

Consequently, we frame a generic set of topics that an applicant would be expected to 
discuss with a regulator.  The details of those discussions would be specific to the 
technologies involved in a particular application.  Such discussions may be similar to those 
associated with Certification Review Items (CRIs), which are used in the aviation domain.  
Equivalently, the topics we identify may be an appropriate structure for CRIs related to 
programmable content. 

Over time, as experience is gained, information may be collected and summarised into a 
more-traditional form of codified good practice.  Although feasible, we recognise this 
approach has limitations.  In particular, both the applicant and regulator need a sufficiently 
detailed understanding of the relevant technologies: this is not easy to achieve. 

1.2 Related Work 

The use of a generic set of topics is not a new concept.  For example, there are already the 
"4+1 Software Safety Assurance Principles" (Hawkins et al. 2013).  In addition, the 
Federal Aviation Administration (FAA) and the National Aeronautics and Space 
Administration (NASA) have described a set of overarching properties (Holloway 2019). 

Our work differs from the software safety assurance principles in that it explicitly 
considers the substrate on which the software is running.  In addition, it differs from the 
overarching properties in that it only considers programmable content, rather than a whole 
aircraft or an entire system.  Consequently, our scope is broader than that of the software 
safety assurance principles and narrower than that of the overarching properties.  
Crucially, this choice of scope allows us to direct an appropriate amount of attention to 
novel types of programmable content. 

2 Structure of Our Approach 

2.1 Concepts 

A program instantiates user-observable behaviour, where a "user" might be, for example, a 
human or another system component.  Although the implementation may be complicated, 
we suggest that a program's intended behaviour is sufficiently constrained to allow it to be 
captured in a set of requirements that are meaningful to a user.  This is often because a 
program has been developed to satisfy the needs of a particular user (or group of users).  
For clarity, we note that our concept of a program encapsulates both software and data. 

A substrate provides the physical environment in which the program executes.  The same 
substrate is expected to be able to support many different programs (not necessarily 
executing simultaneously).  Equivalently, from the view of any individual program, the 
substrate is over-specified; a single program will only use a portion of the substrate's 
capabilities.  In addition, both the physical nature of the substrate and the typically 
complex interaction between substrate and program result in substrate-level requirements 
being more detailed and more numerous than user-level program requirements.  
Consequently, we suggest that, typically, it is not possible for all aspects of a substrate's 
behaviour to be captured by requirements. 
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Without a substrate, a program is merely theoretical.  Although some claims might be 
made about a program's behaviour, e.g. number of steps associated with a worst-case 
execution, these inevitably make assumptions about the substrate.  Consequently, safety 
assurance of a program cannot be completed in isolation.  Conversely, without a program, 
a substrate delivers no user-observable functionality, so safety assurance of a substrate in 
isolation is, at best, incomplete.  Hence, safety assurance arguments related to 
programmable content are about a program (or a collection of programs) executing on a 
given substrate.  This observation reflects current practice, e.g. RTCA/DO-178C's 
consideration of the target computer (RTCA 2011a). 

To simplify presentation, we often refer to a single program, with a single developer.  In 
almost all cases, there will be multiple programs and multiple developers.  For example, in 
a traditional implementation, the substrate would be some form of processor, whereas the 
Operating System (OS) and applications would be programs. 

The preceding discussion may suggest a clear and obvious separation between program 
and substrate.  As the example of processor microcode illustrates, however, this is not 
always the case.  Fundamentally, for us, the program contains things that, by design, would 
be expected to vary between programs and hence are under developer control.  By that 
interpretation, microcode would be part of the substrate.  Regardless of where the dividing 
line is drawn for any specific application of a particular technology, it is important that 
nothing is left unconsidered.  This is another reason why, as noted earlier, assurance is 
about a program executing on a substrate. 

2.2 Program Level Assurance 

We are concerned with providing assurance that programmable content behaves as 
expected by the user, which may be a human or another system component.  Our focus is 
on showing that the programmable content meets the expectations of the user, rather than 
demonstrating that the user's expectations will result in a safe system.  Nevertheless, 
assurance of programmable content behaviour should be a useful claim, within a wider 
assurance argument, that a system is acceptably safe.  As noted previously, a program's 
intended behaviour is captured in a set of requirements.  Consequently, assurance needs to 
protect against all the following situations (Figure 1): 

1. Where there is a difference in understanding of the requirements between the 
user and the program developer: colloquially, "requirements are 
misunderstood". 

2. Where the program's behaviour is a strict subset of the requirements: "some 
expected behaviour is not present". 

3. Where the program's behaviour is a strict superset of the requirements: "some 
unexpected behaviour is present". 

 

Figure 1 ~ Program Level Situations to Protect Against 
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It is helpful to reflect these behaviour-related outcomes in the more familiar context of 
traditional software. 

In this case, protection against the first situation (requirements are misunderstood) is 
achieved by ensuring that requirements have particular characteristics, for example, 
accurate, complete, consistent, unambiguous and verifiable.  Adopting a Requirements-
Based Testing (RBT) approach, where the program and the tests are independently derived 
from the requirements, also helps protect against ambiguity in requirements. 

RBT also protects against the second situation (some expected behaviour is not present).  
If the program's behaviour is verified against each requirement, then all expected 
behaviour should be present.  This, of course, assumes that the verification methods are 
sound: control of the test environment and accuracy of tests cases are important 
considerations here. 

Protection against the third situation (some unexpected behaviour is present) typically 
involves measuring code coverage using structural metrics, e.g. branch coverage, as part of 
an RBT endeavour.  This approach is based on an implicit assumption that code structure 
(rather than, say, data) is the main way that different behaviours are instantiated.  This 
approach also assumes that large-scale behaviour, as expressed in user-level requirements, 
can be decomposed to low-level behaviour, where coverage is typically measured.  
Robustness testing, e.g. checking for arithmetic overflow and exceeded frame times, also 
helps protect against some unexpected behaviour being present. 

Formal methods (RTCA 2011c) provide an alternative approach to protecting against our 
three undesirable outcomes.  In this approach, requirements are written in a formal 
language, guaranteeing an accurate, unambiguous, consistent (but not necessarily 
complete) description of intended behaviour.  This description is refined, often through 
several stages, to formally demonstrate that the program instantiates the requirements.  
There have been several successful applications of formal methods; recent examples 
include a compiler (Leroy et al. 2016) and a microkernel (Klein et al. 2009). 

Our three behaviour-related outcomes represent a slightly different way of considering 
program-level assurance.  Although they cover similar themes, e.g. satisfaction of 
requirements, our outcomes provide an alternative perspective to the "4+1 Software Safety 
Assurance Principles" (Hawkins et al. 2013).  Paradoxically, the widespread success of 
these principles, which summarise most current approaches to program-level safety, means 
they are not well-suited for our purpose.  We believe they are, in many people's minds, 
wedded tightly to the development of traditional software, including the explicit, traceable, 
hierarchical decomposition of requirements.  Consequently, they are not ideally suited for 
considering new types of programmable content (Ashmore and Lennon 2017).  That said, 
our separation of program level and substrate level assurance means that the 4+1 
Principles could be used for the former, with our topic areas being adopted for the latter.  
This might be an attractive approach when the program is largely traditional, with the 
novelty being in the substrate level. 

In addition to the three behavioural outcomes noted above, there is also a need to consider 
protection against malicious intent.  Different technologies may provide protection against 
certain types of malicious activity: the memory protection offered by the Rust 
programming language (Balasubramanian et al. 2017) is one example; the CHERI 
(Capability Hardware Enhanced RISC [Reduced Instruction Set Computer] Instructions) 
are another (Watson 2019).  Most program developments are, however, subject to the same 
two vulnerabilities.  Firstly, the insider threat, which may be partially protected against by 
review activities.  Secondly, vulnerabilities inserted via the tool chain, e.g. (Thompson 
2007), (Goodin 2017), and (Peisert et al. 2021), which may be partially (but only partially) 
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protected against by obtaining professional-quality tools from reputable supply chains.  
Given the common nature of these vulnerabilities, for reasons of brevity, malicious activity 
at the program level is not discussed in detail in this paper.  Nevertheless, it remains a very 
important issue. 

2.3 Substrate Level Assurance 

We adopt an expectation-based approach for substrate-level assurance.  In particular, we 
are concerned with demonstrating that the substrate behaves as expected by the program 
developer. 

As discussed previously, we contend that substrate-level behaviour cannot be meaningfully 
encapsulated (for a program developer) in a set of requirements.  Inevitably, due to the 
breadth and depth that these requirements would have to cover, expectations only ever 
capture a subset. 

The breadth issue arises because the substrate supports many different types of program.  
Consequently, an individual program will only use a fraction of the substrate's capability.  
A program developer will focus on those aspects of the substrate that appear relevant to 
their specific development.  This understandable focusing inevitably produces a partial 
picture. 

The depth issue arises because the substrate spans from a physical implementation to the 
level of abstraction used by the program developer: for traditional processors, the substrate 
spans from transistor-level properties of electrons to the Instruction Set Architecture (ISA).  
Across this scope, many aspects of physics can affect behaviour.  For traditional 
electronics, single event upsets are an example that may arise naturally (Taber and 
Normand 1993), as are manufacturing and age-related issues (Dixit et al. 2021).  There are 
also malicious attacks that exploit predictable outcomes of changes in the substrate's 
electronic environment, e.g. (Mutlu and Kim 2019) and (Murdock et al. 2020).  
Encapsulating a complete set of these effects in requirements seems, to us, an 
insurmountable challenge. 

Typically, some form of on-target testing addresses common behaviour.  Hence, the 
question of unexpected behaviour reduces to identification of potential edge cases.  
Ideally, these should be identified by a process that is rigorous, repeatable, and auditable.  
This is often achieved through the provision of some form of structure: the guidewords 
used in a hazard and operability study (HAZOP) are one example (Crawley and Tyler 
2015).  We propose the structure illustrated in Figure 2. 

At the top level, this structure distinguishes between two classes.  The first class covers 
cases where the program developer expects the substrate to behave in a manner that could 
be feasible but is not exhibited at the relevant time: colloquially, we term this a "could be, 
but isn't" (CBBI) behaviour.  The second class covers cases where the developer expects a 
behaviour that "could never be" (CNB) delivered by the substrate.  This distinction can be 
important because the former class (CBBI) can typically be controlled through 
configuration, whereas the latter class (CNB) cannot. 

Note that the notion of expectation used here includes cases where the program developer 
expects something to happen, as well as cases where the program developer expects 
something not to happen.  As such, it encapsulates situations where expected behaviour is 
absent, as well as situations where unexpected behaviour is present. 
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Figure 2 ~ Substrate Level Situations to Protect Against 

Unexpected CBBI behaviours occur due to some influence on the substrate's behaviour.  
That influence may be static, i.e. remain fixed for the duration of program execution, or it 
may be dynamic.  In addition, that influence may be internal to the substrate, or it may be 
external.  The combination of these properties gives us four ways of identifying 
unexpected behaviour.  These are illustrated in Table 1, with examples from the context of 
an MCP.  These examples are provided solely to help illustrate our approach.  As noted 
previously (in subsection 1.1), there are technology-specific standards for MCP, which are 
better suited to that specific technology than our more generic approach.  Note that, as 
shown in Table 1, the "static, external" combination is addressed by (system) integration. 

Table 1 ~ Examples of CBBI Protections in an MCP Context 

 Static Dynamic 

Internal 
Initialisation: Ensuring the MCP con-
figuration settings are as intended. 

Interference: Mitigating the poten-
tial effects of shared resource use. 

External 

Integration: Introduction of a "safety 
net" (or "safety monitor") external to 
the MCP. 

Environment: Protecting against 
single event upsets, for example, 
due to cosmic rays. 

 

In addition to the four combinations shown in Table 1, we explicitly consider a fifth item, 
specifically, malicious activity.  Examples from the perspective of an MCP are shown in 
Table 2.  This demonstrates that malicious activity can be associated with all four of the 
previously identified combinations, which may suggest that a specific malicious item is 
unnecessary.  We have considerable sympathy with that view, especially as we strongly 
favour greater integration between, historically separate, safety and security activities.  
However, on balance, we believe the explicit security-related focus provided by the 
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malicious item is beneficial.  Note that we explicitly cover malicious activity for the 
substrate because it differs significantly between substrates.  (At the level of detail 
considered in this paper, there is much more commonality in the types of malicious 
activity that are associated with the program level.) 

Table 2 ~ Examples of Malicious Activity for an MCP 

 Static Dynamic 

Internal 
Malicious: Hardware-based spyware 
that operates continuously. 

Malicious: Hardware-based Trojan 
that is triggered by specific conditions. 

External 
Malicious: Undervolting a processor, 
to break secure enclave protection. 

Malicious: Generation of external 
electro-magnetic fields to induce 
faults. 

 

For CNB behaviours, we seek to understand how the program developer may come to 
expect impossible ("could never be") substrate behaviour.  We identify three potential 
sources for the mistaken expectation.  Working from a more general perspective to a more 
specific one, these are: 

• Expectations based on previous experience.  For example, a developer used to working 
with single core processors may assume exclusive use (within a given time period) of 
peripherals.  This might not be true for an MCP-based implementation. 

• Expectations based on substrate documentation.  These expectations could be 
mistaken, for example, because of errata or the presence of undocumented features 
(Domas 2017). 

• Expectations based on development processes.  Differences between the host, i.e. 
development, and target, i.e. operational, systems are a common source of mistaken 
expectations. 

2.4 Outline Comparisons with Other Standards 

We stress that our approach is not meant to replace existing, or emerging, technology-
specific standards (or standards-like documents).  Where technology-specific information 
is available, this should provide a more detailed description of relevant assurance topics 
(and how these may be addressed) than is possible for any generic approach.  Technology-
specific standards can describe both requirements and associated acceptable means of 
compliance.  In contrast, our generic approach can only outline requirements, in the form 
of topic areas to be discussed. 

As suggested above, our approach is intended to be used when no technology-specific 
standards are available.  Since they satisfy different aims, a detailed comparison of our 
approach with existing technology-specific standards is not appropriate.  Nevertheless, a 
top-level, outline comparison is considered beneficial, for two reasons.  Firstly, it provides 
an additional description of our approach and how it may be used.  Secondly, it provides 
confidence that the identified topic areas are both necessary and sufficient. 

Consequently, our approach has been compared with CAST-32A (CAST 2016), which 
considers MCP, and the computation-level framework of SCSC-153A (SCSC 2020), 
which considers artificial intelligence implemented using machine learning techniques.  
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Details of these outline comparisons are in Appendix A (Table 6 and Table 7, 
respectively). 

The mapping to CAST-32A illustrates that all but one of CAST-32A's objectives can be 
mapped to our generic topic areas.  The exception is that CAST-32A explicitly asks for an 
accomplishment summary, whereas communication mechanisms are not explicitly detailed 
in our approach.  This mapping also shows that each of our areas maps to at least one 
CAST-32A objective. 

The mapping to the SCSC-153A computation level shows that all of SCSC-153A's 
objectives can be mapped to our generic topic areas.  It also shows that each topic area 
maps to at least one objective.  It is noteworthy that our substrate topic areas, of which 
there are eight, correspond to only two of the nineteen SCSC-153A objectives.  This 
reflects the greater prominence given to the substrate in our work, and is deemed 
appropriate, since this is an area of significant technological development. 

The simple nature of these mappings means it would be inappropriate to read too much 
into their results.  Nevertheless, they provide some confidence that the topic areas 
identified in our work are both necessary and sufficient for discussing assurance-related 
issues associated with new programmable content technologies.  Further confidence is 
provided by the examples discussed in the following section. 

3 Example Application 

3.1 Example Programmable Content Technologies 

To illustrate our topic areas, we apply them to three program/substrate combinations: 

• An algorithm developed using Machine Learning (ML), running on a large-scale, 
complex System-On-Chip (SOC); 

• An algorithm running on a quantum computer; and 

• An algorithm running on a bio-based substrate. 

The first example represents a technology that is available commercially now.  The second 
and third technologies represent items that are being actively researched and where the 
associated substrates have very different properties to silicon-based electronics.  We 
suggest that this range of examples (together with the previous MCP-related commentary) 
illustrates the generic nature of our approach.  We note, however, that many other types of 
substrate could have been considered, e.g. neuromorphic processors (Davies et al. 2018), 
and memory-based compute (Bearden et al. 2020).  The large number of potential 
examples is a key motivation for this paper. 

The three examples are considered in the following subsections.  Each subsection begins 
with a brief overview of the program and substrate.  This is followed by a discussion of 
some of the key assurance points.  Note that these discussions are not intended to be 
complete.  Their purpose is not to act as a ready-made argument that can be deployed for 
any use of the associated substrate.  Instead, the discussions are intended to demonstrate 
the way our generic assurance topics highlight key assurance aspects. 
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3.2 An Algorithm Developed using ML, Running on a SOC 

Overview:  This example uses Commercial Off-The-Shelf (COTS) hardware in the 
context of an autonomous vehicle.  More specifically, the substrate is an NVIDIA Jetson 
AGX Xavier SOC (NVIDIA Corporation 2021).  This includes: a 512-core Graphical 
Processing Unit (GPU); an 8-core Central Processing Unit (CPU); two Deep Learning 
Accelerator (DLA) engines; a Very Long Instruction Word (VLIW) vision processor; 
Double Data Rate (DDR) 4 memory; and embedded Multi-Media Card (eMMC) storage. 

We consider a program implemented as a Deep Neural Network (DNN), which performs 
object recognition on camera images.  This program was developed using a combination of 
tools, including: the Jetson AGX Xavier Developer Kit; TensorRT; cuDNN; and 
TensorFlow.  Training data was obtained from a fleet of camera-equipped vehicles.  The 
program also includes the Board Support Package (BSP) and the OS, which in this case is 
Linux for Tegra (L4T). 

Our considerations for this example draw heavily on (Ashmore and Sharp 2020), 
(Ashmore et al. 2021) and (SCSC 2020). 

Program Level:  For the purposes of this paper, it is assumed that the BSP and OS are 
largely traditional, so they are not considered further.  In practice the BSP and OS are 
often an important part of the overall COTS package.  As such, their influence on the 
behaviour of the substrate may require a thorough analysis. 

ML is typically used to solve open problems, which do not have a complete set of 
accurate, consistent, and verifiable requirements.  Indeed, if such a set of requirements is 
available then traditional software development techniques may be preferred (Salay and 
Czarnecki 2018). 

When ML is used, protection against requirements are misunderstood may be achieved, 
at least in part, by: 

• Ensuring training data is relevant to the object recognition task: for example, a training 
data set comprising German language road signs would not be relevant for an algorithm 
deployed on UK roads. 

• Ensuring model behaviour is interpretable, including behaviour on a single input (local 
interpretability) and behaviour on classes of input (global interpretability). 

• Ensuring independent verification activities provide suitable coverage of the inputs 
likely to be received during operational use. 

Protection against some expected behaviour is not present may be achieved, at least in 
part, by: 

• Ensuring measures of model performance adequately capture required behaviour.  For 
example, some misclassifications may be more important than others: misclassifying a 
pedestrian as a road marking is likely to be worse than mistaking a 50 mph speed limit 
sign for a 30 mph limit.  Consequently, a model that had similar misclassification rates, 
regardless of the classes involved, would not be demonstrating the expected behaviour. 

• Ensuring test environments are sufficiently representative of the real world.  This can be 
challenging, especially for open problems, where it is difficult to know which parts of 
reality need to be sufficiently represented. 

Protection against some unexpected behaviour is present may be achieved, at least in 
part, by: 
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• Ensuring training data is suitably complete. For example, covering a sufficiently wide 
collection of classes, and sub-classes (Paterson and Calinescu 2019), of object types, 
observed in a sufficiently wide range of meteorological and illumination conditions. 

• Ensuring testing on the target hardware covers, either exhaustively or via appropriate 
sampling, the training, test, and verification sets.  Also, ensuring that this testing covers 
robustness issues, e.g. arithmetic overflow, numerical accuracy. 

• Ensuring independent verification activities provide suitable coverage of inputs that may 
be received following failures elsewhere in the system, e.g. camera issues. 

Substrate Level:  The substrate is a COTS item.  This means the programmable content 
developer is likely to, at best, have limited influence over its design features.  It also means 
that the developer is likely to have only limited information about the SOC's 
implementation-level features.  (A similar situation prevails for many modern processors, 
including MCPs, where detailed implementation-level feature information is unlikely to be 
available.) 

From an initialisation (CBBI - static, internal) perspective, documenting and justifying 
the desired SOC configuration is important.  This includes, but is not limited to, control of 
debug features and microcode updates. 

From an interference (CBBI - dynamic, internal) perspective, runtime monitoring of the 
SOC's configuration is important (especially for software-configurable items).  The 
potential effects of other software running alongside the program under test may also be 
important. 

From an environment (CBBI - dynamic, external) perspective there may be a need to 
protect against the effect of active sensors on the autonomous vehicle, or other vehicles.  
For example, the combined effect of multiple, active sensors in a cluttered urban 
environment may need to be considered. 

From an integration (CBBI - static, external) perspective, (system) integration activities 
providing for multiple processing channels, running on separate substrates, is an important 
consideration.  For example, the object recognition channel (the subject of the current 
discussion) may be combined with a much simpler object detection channel.  When 
multiple channels are used, the degree of independence needs to be carefully considered. 

From a malicious perspective, the COTS nature of the substrate makes it extremely 
difficult to protect against the introduction of a hardware-based Trojan.  Thinking about 
the standard cyber security triad of Confidentiality, Integrity and Availability (CIA), 
availability should be detectable and manageable by traditional safety measures, similar to 
a hardware failure of the SOC.  Multiple processing channels should be used to detect loss 
of integrity.  Confidentiality is very difficult to protect at the substrate-level.  System-level 
architectural designs, which, from a confidentiality perspective, treat the SOC as an 
"untrusted box" may be an appropriate way of mitigating this risk. 

From an experience (CNB) perspective, a developer may be unfamiliar with the 
combination of features available on the SOC.  In particular, the combination of CPU, 
GPU and DLA may mean that the developer's program is executed on an unexpected part 
of the substrate.  This risk may be exacerbated if different SOC workloads result in 
different execution patterns. 

From a documentation (CNB) perspective, the possibility of undocumented features and 
document errata should be considered.  The latter may be protected against by careful 
monitoring of information provided by the substrate manufacturer.  Where specific 
features of the substrate are of particular importance, a "trust but verify" approach may be 
appropriate. 
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From a development (CNB) perspective, the SOC chosen for this example may be 
sufficiently powerful to support both development and operational use, thus removing 
host-target differences.  Alternatively, these differences may be important, if development 
is conducted on a GPU, but operational inference is conducted on a DLA.  One way of 
mitigating this concern would be to conduct all post-training evaluation on the intended 
target hardware. 

3.3 An Algorithm Running on a Quantum Computer 

Overview:  We begin by noting that, if it is successfully commercialised (Dyakonov 
2019), quantum computing is most likely to be applied as a co-processing technology, i.e. 
alongside traditional computers. 

To illustrate the utility of quantum computing, it is helpful to consider different categories 
of problem (or application).  For presentational reasons, we are deliberately imprecise: a 
more precise description is provided in (Gheorghiu et al. 2019).  As shown in Table 3, we 
identify three separate classes, depending on whether a problem can easily be solved, and 
whether a solution can easily be checked, using traditional computers. 

Table 3 ~ Computation Classes Relevant to Quantum Computation 

Using Traditional Computers ... Class 1 Class 2 Class 3 

... Easily Solved? Yes No No 

... Easily Checked? Yes Yes No 

 

For problems in Class 1, there is no need to invoke the additional complexity of a quantum 
computer.  For problems in Class 2, provided the implications of a failed check can be 
handled safely, a significant amount of the assurance burden may be borne by using 
traditional computing to check a solution and, as such, assurance of the quantum portion 
may be less of a concern.  Hence, problems in Class 1 and Class 2 are excluded from the 
current discussion. 

To the best of our knowledge, the existence of Class 3 problems has not been proven.  
However, there are problems that credibly can be claimed as being in this class.  One 
example requires calculation of a path that traverses a network (or graph) of a particular 
form (Childs et al. 2003). 

A key aspect of a quantum computer is the notion of a "quantum bit", or qubit.  Unlike a 
traditional bit, which holds a single value (either 0 or 1), a qubit holds a superposition of 
both 0 and 1; equivalently, a qubit holds a probability distribution over the space {0, 1}. 
Entanglement can be used to link qubits, so that the superposition of n qubits describes a 
probability distribution over a space containing 2n items.  When a measurement is taken, 
the superposition collapses to a single item.  The likelihood of receiving a particular 
measurement matches the associated probability encoded in the superposition. 

Over recent years, there has been significant progress on quantum computing.  For 
example, there is an open-source system, which includes a compiler, simulator and 
emulator (Steiger et al. 2018).  This system includes a backend that links to cloud-based 
access to quantum computers, provided by IBM (IBM 2021).  Other ways of interacting 
with these quantum computers are also available (IBM n.d.). 
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A simplified, but indicative, quantum computer system stack, based on (Fu et al. 2016), is 
illustrated in Table 4. This distinguishes program-level considerations and substrate-level 
considerations. 

Table 4 ~ Simplified Quantum Computer System Stack 

Stack Program / Substrate 

Quantum Algorithm 

Program Programming Paradigm / Language 

Compiler 

Quantum Instruction Set Architecture 

Substrate Quantum Execution / Error Correction 

Quantum Chip 

 

Given our current level of understanding, this example focuses on issues to be discussed, 
rather than on potential solutions to these issues. 

Program Level:  Our chosen example involves calculating a traversal path for graphs of a 
certain form.  When considering requirements are misunderstood, it could be whether 
the program should calculate any path, or whether the shortest path should be calculated.  
As highlighted previously, quantum computing is inherently stochastic.  Hence, 
requirements relating to the probability of obtaining the desired result (including whether 
results from sequential runs are statistically independent) may be misunderstood. 

In terms of some expected behaviour is not present, test results may be influenced by 
inappropriate control of the test environment.  This may be a particular concern if multiple 
tests are executed sequentially. 

The program being considered is relatively simple in intent and, as such, offers little 
opportunity for cases where some unexpected behaviour is present.  One possible 
example is different classes of network may be much easier to analyse.  In some 
circumstances, significant changes in compute timing, for different classes of input, may 
be additional and unwanted behaviour. 

Substrate Level:  Quantum computation is an immature domain.  Consequently, a specific 
example substrate is not discussed.  Instead, we consider the quantum substrate in more 
general terms than that of the ML SOC. 

From the perspective of initialisation (CBBI - static, internal), we are concerned with the 
way that initial qubit values are established, as well as the way that qubit entanglements 
are created. 

In terms of interference (CBBI - dynamic, internal), decoherence and noise are 
significant challenges to the physical implementation of a quantum computer.  These 
effects make it difficult to maintain specific values in, and entanglement between, qubits.  
Quantum Error Correction (QEC) methods are used to help mitigate these effects, at the 
expense of using a larger number of qubits. 
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With regards to environment (CBBI - dynamic, external), current quantum computers 
require tight control of the environment, in particular to reduce the amount of 
environmental noise. 

From the perspective of integration (CBBI - static, external), the way that information is 
passed from a traditional computing resource to the quantum computer is of interest.  
Additionally, the number of times a quantum algorithm is repeated is another factor.  
Further, most QEC approaches rely on integration between a control mechanism 
implemented on a traditional computer and a quantum computer. 

Malicious intervention into quantum cryptographic protocols is well-studied (Padmavathi 
et al. 2016).  The potential vulnerabilities of quantum computers appear to be less well 
investigated.  One obvious topic is an effective denial of service attack, caused by 
increasing the noise in the environment. 

Quantum computer programs are based on a very different paradigm to traditional 
programs.  For example, all steps in a quantum program need to be reversible, qubits 
cannot be copied, and no loops are permitted.  (If necessary, loops can be achieved by 
repeated interaction between traditional and quantum computers, with the former handling 
the loop construct.)  There are also cases where it is appropriate to use an undefined qubit 
in a calculation.  These differences mean a developer may have unrealistic expectations 
based on previous experience (CNB). 

Inaccurate documentation (CNB) may create unrealistic expectations.  One significant 
area involves understanding gate-level reliability, which depends on the QEC scheme 
employed, as well as the quantum computer's tolerance to external noise. 

Unrealistic expectations may arise as part of development (CNB) due to inaccuracies in 
simulators and emulators used to debug quantum algorithms.  Some of these, especially 
those relating to the final, pre-measurement superposition distribution, may be difficult to 
identify. 

3.4 An Algorithm Running on a Bio-Based Substrate 

Overview:  This example considers molecular-based techniques, which exploit Chemical 
Reaction Networks (CRNs), implemented via Domain Strand Displacement (DSD) (Badelt 
et al. 2017).  A brief introduction to CRNs is available in (Ashmore 2020). 

A chemical reaction, in which reactants produce products at a given rate, is expressed in 
the general form: 

  (Equation 1) 

Both reactants and products are more generally referred to as species.  A CRN is a 
collection of related reactions. 

In order to practically implement a CRN, fuel species are typically needed, e.g. to catalyse 
reactions, and waste species are often produced.  Hence, a more complete description is: 

  (Equation 2) 

A number of implementations of CRNs have been demonstrated, including neural 
networks and solutions to the 3-SAT satisfiability problem (Winfree 2019). 

For the purposes of our current discussion, we consider Equation 1 to be at the program 
level and Equation 2 to be at the substrate level; that level also includes, for example, the 
physical vessel in which the reactions occur. 
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Within this section, we assume the CRN is implemented in a bulk, well-mixed system 
rather than, for example, using a surface-based implementation (which, from our 
perspective, would be a different type of substrate).  Where we need a specific example, 
we consider a combined CRN watchdog-oscillator system, where the watchdog can reset a 
failed oscillator (Ellis et al. 2019).  However, much of the following focuses on generic 
CRN-related issues, rather than specific details of this example.  This discussion is based 
on (Ellis et al. 2019), (Lutz et al. 2012) and (Johnson et al. 2019). 

Program Level:  In terms of requirements are misunderstood, CRNs are inherently 
stochastic, which needs to be appropriately reflected in the requirements.  Requirements 
may also include implicit (and, consequently, misunderstood) assumptions regarding the 
fate, or future utility, of intermediate products.  CRN behaviour is memoryless, stochastic, 
and asynchronous, so CRNs can be represented as Continuous Time Markov Chains 
(CTMCs).  They are thus amenable to model checking, using tools like PRISM 
(Kwiatkowska et al. 2011), which can help detect ambiguous requirements. 

Model checking can also provide a way of protecting against some expected behaviour is 
not present.  CRNs also consume physical resources.  In the case of our specific example, 
this may limit the number of times a broken oscillator may be restarted.  Conversely, a 
user might expect unlimited restarts. 

In CRNs, the concentration of a species, i.e. the amount present in the bulk mixture, can be 
viewed as analogous to a real-valued variable.  More strictly, since concentrations cannot 
be negative, two species are needed to represent a real-valued variable: one for positive 
values and one for negative values.  Including a set of reactions to cover negative values, 
when a variable can only take positive values, would be an example of some unexpected 
behaviour is present at the program level.  Another example of unexpected behaviour 
could be including reactions to "tidy up" intermediary species, when not specified to do so 
in the requirements. 

Substrate Level:  In terms of initialisation (CBBI - static, internal), key issues include 
the provision of sufficient quantities of reactant and fuel species.  In addition, vessels used 
to contain the CRN implementation should be demonstrably free from contamination. 

Concerning interference (CBBI - dynamic, internal), in a bulk mixture all possible 
reactions occur simultaneously.  This can make it challenging to schedule discrete steps 
within a program.  Steps may be approximated with very different reaction rates (earlier 
steps having faster rates).  Additionally, the products of a first step may be the reactants of 
a second step: this will ensure some of the first step completes before the second step 
begins; it will not ensure that the first step fully completes before the second step begins.  
Another approach involves using separate physical containers for each step: this obviously 
complicates the physical implementation (and integration).  Another interference issue is 
unintended reactions, especially reactions that involve waste species. 

From the perspective of the environment (CBBI - dynamic, external), chemical reaction 
rates are sensitive to environmental conditions, like temperature and pressure.  If these are 
not as intended, then the actual reaction rates may be very different to those anticipated.  
Additionally, the change in reaction rate may not be uniform across all reactions in a CRN, 
making sequencing of program steps even more challenging. 

In terms of integration (CBBI - static, external), a bio-based approach needs a 
mechanism for communicating the results of the computation.  This is often achieved via 
molecules with different levels of luminescence.  Using this type of approach to "read" the 
result of the computation is part of integration.  For ongoing, continuous programs, e.g. 
monitors, integration may also involve ensuring there is a sufficient flow of fuel and 
reactants; removal of waste may also be a factor. 
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To the best of our knowledge, there has been little work on malicious interference with 
CRNs.  Consequently, we merely highlight two theoretical possibilities.  Firstly, we note 
that additional species could be inserted so that the program's behaviour changes after a 
certain number of oscillations (or, perhaps, a certain number of oscillator resets).  
Secondly, we note that the concentration of waste species could provide an adversary with 
valuable information, potentially undermining confidentiality. 

From an experience (CNB) perspective, most programmers used to traditional electronics 
may be challenged by the notion that all possible reactions can occur simultaneously.  The 
significant time taken for processing to complete (typically measured in hours) may be 
another relevant factor. 

With regards to documentation (CNB), the mapping from an abstract CRN, e.g. Equation 
1, to an implementation CRN, e.g. Equation 2, means that, in essence, each substrate is 
program-specific.  In traditional terms, the substrate is more like an Application-Specific 
Integrated Circuit (ASIC) than a general-purpose CPU.  Hence, documentation relates to 
the way the relevant species are created and their resulting properties, e.g. amount of 
species fragments, or other unintended items. 

In terms of development (CNB), there are two main ways of analysing bulk mixtures. 
CTMCs account for stochastic behaviour and are amenable to model checking. Ordinary 
Differential Equations (ODEs) represent expected, average behaviour.  This combination 
of methods may help protect against incorrect expectations.  In addition, bisimulation 
approaches can provide confidence that an implementation CRN accurately reflects the 
intent of an abstract CRN (Johnson et al. 2019). 

4 Summary 

Table 5, overleaf, provides a very brief summary of the main points raised in the preceding 
examples.  Depending on the nature of the example, these points may be mechanisms for 
providing assurance evidence, or issues that should be addressed by assurance evidence.  
For completeness, this table also includes a line on malicious activity at the program level. 

The table demonstrates the potential applicability of our generic assurance topics to a wide 
range of programmable content.  Whilst this is encouraging, more work is needed before 
these topics, broken down into program and application substrate, can become a formal 
recommendation.  Completion of a number of specific worked examples, with sufficient 
detail to provide compelling assurance arguments, are an important part of that work. 

Finally, motivated by the creation of specialised SOCs for ML tasks, and the broadening of 
computation away from traditional transistor-based architectures, we have highlighted the 
need for a set of generic assurance topics.  These should enable a consistent approach to 
assuring elements within the ever-broadening domain of programmable content. 
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Table 5 ~ Summary of Generic Assurance Topics and Chosen Examples 

 

Developed Using 
ML, Running on a 
SOC 

Algorithm Run-
ning on a Quan-
tum Computer 

Algorithm Run-
ning on a Bio-
Based Substrate 

P
ro

g
ra

m
 

Requirements are 

misunderstood 

Relevant training 
data; interpretable 
behaviour; inde-
pendent verification 

Requirements relat-
ing to probability of 
correct result; inde-
pendence of se-
quential runs 

Reflect stochastic 
nature; intermediate 
products; probabil-
istic model check-
ing 

Some expected 
behaviour is not 
present 

Adequate measures 
of model perfor-
mance; sufficiently 
representative test 
environment 

Control of the test 
environment, e.g. 
sequential tests 

Probabilistic model 
checking; consump-
tion of physical re-
sources 

Some unnecessary 
behaviour is pre-
sent 

Sufficient testing 
(including robust-
ness); independent 
verification 

Significant, input-
dependent changes 
in timing 

Inclusion of species 
for negative values; 
tidy up of interme-
diate species 

Malicious activity 
Insider threat; tool-
based vulnerabilities 

Insider threat; tool-
based vulnerabili-
ties 

Insider threat; tool-
based vulnerabili-
ties 
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Developed Using 
ML, Running on a 
SOC 

Algorithm Run-
ning on a Quan-
tum Computer 

Algorithm Run-
ning on a Bio-
Based Substrate 

S
u

b
st

ra
te

 

Initialisation 
(CBBI - static, in-
ternal) 

Document and justi-
fy SOC configura-
tion 

Initial qubit values 
and entanglements 

Sufficient quantities 
of species; vessels 
free from contami-
nation 

Interference 
(CBBI - dynamic, 
internal) 

Runtime monitor-
ing; effects of co-
hosted software 

Decoherence; noise; 
QEC 

Sequencing steps; 
unintended reac-
tions 

Environment 
(CBBI - dynamic, 
external) 

Active sensors on 
own, and other ve-
hicles 

Noise 
Effects on reaction 
rates 

Integration (CBBI 
- static, external) 

Multiple processing 
channels 

Passing information 
from traditional to 
quantum; number of 
re-runs 

Reading the results; 
input flow of spe-
cies; removal of 
waste 

Malicious activity 

Hardware-based 
Trojans; multiple 
processing channels; 
untrusted "closed 
box" architecture 

Denial of service by 
increasing envi-
ronment noise 

Insertion of addi-
tional species; con-
centration of waste 
species 

Experience (CNB) 
Combination of 
processing features 

Reversible; no qubit 
copying; no loops 

Simultaneous reac-
tions; long pro-
cessing time 

Documentation 
(CNB) 

Undocumented fea-
tures; document er-
rata; trust but verify 

Gate-level reliabil-
ity; QEC scheme 

Way species are 
created 

Development 
(CNB) 

Host-target differ-
ences; train on tar-
get 

Inaccuracies in 
simulators and emu-
lators 

CTMCs; ODEs; 
bisimulation 

 

Disclaimers 

This document is an overview of UK MOD sponsored research and is released for 
informational purposes only.  The contents of this document should not be interpreted as 
representing the views of the UK MOD, nor should it be assumed that they reflect any 
current or future UK MOD policy.  The information contained in this document cannot 
supersede any statutory or contractual requirements or liabilities and is offered without 
prejudice or commitment. 
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Appendix A. Outline Comparison Mappings 

Table 6, below, provides an outline mapping between the objectives listed in CAST-32A 
and the generic topic areas identified in this paper.  Table 7 provides a similar mapping 
between the objectives in the computation-level framework of SCSC-153A and the topic 
areas of this paper. 

Table 6 ~ Outline Mapping from CAST-32A Objectives to Generic Topic Areas 
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Table 7 ~ Outline Mapping from SCSC-153A Computation-Level Objectives to 
Generic Topic Areas 

SCSC-153A Computa-
tion-Level Objective 

Program Substrate 

C
o

u
n

t 

R
eq

u
ir

em
en

ts
 a

re
 

m
is

u
n

d
er

st
o

o
d

 

S
o

m
e 

ex
p

ec
te

d
 b

e-

h
av

io
u

r 
is

 n
o

t 
p

re
se

n
t 

S
o

m
e 

u
n

ex
p

ec
te

d
 

b
eh

av
io

u
r 

is
 p

re
se

n
t 

C
B

B
I 

In
it

ia
li

sa
ti

o
n

 

(S
ta

ti
c,

 I
n

te
rn

al
) 

C
B

B
I 

In
te

rf
er

en
ce

 

(D
y

n
am

ic
, 

In
te

rn
al

) 

C
B

B
I 

E
n

v
ir

o
n

m
en

t 

(D
y

n
am

ic
, 

E
x

te
rn

al
) 

C
B

B
I 

In
te

g
ra

ti
o

n
 

(S
ta

ti
c,

 E
x

te
rn

al
) 

C
B

B
I 

M
al

ic
io

u
s 

C
N

B
 E

x
p

ec
ta

ti
o

n
 

fr
o

m
 E

x
p

er
ie

n
ce

 

C
N

B
 E

x
p

ec
ta

ti
o

n
 

fr
o

m
 D

o
cu

m
en

ta
ti

o
n

 

C
N

B
 E

x
p

ec
ta

ti
o

n
 

fr
o

m
 D

ev
el

o
p

m
en

t 

COM 1-1: Data is ac-
quired and controlled 
appropriately. 

X           1 

COM1-2: Pre-
processing methods do 
not introduce errors. 

 X X         2 

COM1-3: Data captures 
the required algorithm 
behaviour. 

 X          1 

COM1-4: Adverse ef-
fects arising from distri-
bution shift are protect-
ed against. 

  X         1 

COM2-1: Functional 
requirements imposed 
on the algorithm are 
defined and satisfied. 

X X X         3 

COM2-2: Non-
functional requirements 
imposed on the algo-
rithm are defined and 
satisfied. 

X X X         3 

COM2-3: Algorithm 
performance is meas-
ured objectively. 

 X          1 

COM2-4: Performance 
boundaries are estab-
lished and complied 
with. 

 X          1 

COM2-5: The algorithm 
is verified with an ap-
propriate level of cover-
age. 

 X X         2 

COM2-6: The test envi-
ronment is appropriate. 

 X          1 

COM2-7: Each algo-
rithm variant is tested 
appropriately. 

 X X         2 



Rob Ashmore and James Sharp 

24 

SCSC-153A Computa-
tion-Level Objective 

Program Substrate 

C
o

u
n

t 

R
eq

u
ir

em
en

ts
 a

re
 

m
is

u
n

d
er

st
o

o
d

 

S
o

m
e 

ex
p

ec
te

d
 b

e-

h
av

io
u

r 
is

 n
o

t 
p

re
se

n
t 

S
o

m
e 

u
n

ex
p

ec
te

d
 

b
eh

av
io

u
r 

is
 p

re
se

n
t 

C
B

B
I 

In
it

ia
li

sa
ti

o
n

 

(S
ta

ti
c,

 I
n

te
rn

al
) 

C
B

B
I 

In
te

rf
er

en
ce

 

(D
y

n
am

ic
, 

In
te

rn
al

) 

C
B

B
I 

E
n

v
ir

o
n

m
en

t 

(D
y

n
am

ic
, 

E
x

te
rn

al
) 

C
B

B
I 

In
te

g
ra

ti
o

n
 

(S
ta

ti
c,

 E
x

te
rn

al
) 

C
B

B
I 

M
al

ic
io

u
s 

C
N

B
 E

x
p

ec
ta

ti
o

n
 

fr
o

m
 E

x
p

er
ie

n
ce

 

C
N

B
 E

x
p

ec
ta

ti
o

n
 

fr
o

m
 D

o
cu

m
en

ta
ti

o
n

 

C
N

B
 E

x
p

ec
ta

ti
o

n
 

fr
o

m
 D

ev
el

o
p

m
en

t 

COM3-1: An appropri-
ate algorithm type is 
used. 

 X X         2 

COM3-2: Typical errors 
are identified and pro-
tected against. 

  X         1 

COM3-3: The algo-
rithm’s behaviour is 
explainable. 

X X X         3 

COM3-4: Post-incident 
analysis is supported. 

 X X         2 

COM4-1: The software 
is developed and main-
tained using appropriate 
standards. 

X X X         3 

COM4-2: Software mis-
behaviour does not re-
sult in incorrect outputs 
from the algorithm. 

  X         1 

COM5-1: Appropriate 
computational hardware 
standards are employed. 

   X X X X X X X X 8 

COM5-2: Hardware 
misbehaviour does not 
result in incorrect out-
puts from the algorithm. 

    X X  X    3 

Count 5 13 12 1 2 2 1 2 1 1 1 - 

 


